DOI QR코드

DOI QR Code

Effects of Annealing of Gas-atomized Fe-Si-Cr Powder

Fe-Si-Cr 분말합금의 열처리 효과

Jang, Pyungwoo
장평우

  • Received : 2015.12.21
  • Accepted : 2016.02.11
  • Published : 2016.02.29

Abstract

Effects of annealing of the gas-atomized Fe-9%Si-2%Cr powder which is suitable for high frequency application in mobile devices because of its high electrical resistivity were studied with an emphasis on the order-disorder phase transition. The formation of B2 ordered phase could not be suppressed during atomization process. When the powder was annealed at a temperature higher than $550^{\circ}C$ the peak diffracted from $DO_3$ phase could be detected. With increasing annealing temperature lattice parameter and coercivity decreased. An interesting phenomenon was an abrupt increment of coercivity in the powder annealed at $450^{\circ}C$. Highest permeability could be shown in the powder annealed at a relative low temperature of $150^{\circ}C$ and then the permeability decreased with annealing temperature. The above-mentioned results could be successfully explained by both the formation of $DO_3$ ordered phases and the change of electrical resistivity of the Fe-Si-Cr powder which was also originated from the phase transition.

Keywords

Fe-Si-Cr powder;$DO_3$ phase;B2 phase;annealing;electrical resistivity;permeability

References

  1. K. Hilfrich, W. Kolker, W. Petry, O. Scharpf, and E. Nembach, Scripta Metallurgica et Materialia 24, 39 (1990). https://doi.org/10.1016/0956-716X(90)90563-V
  2. K. Narita and M. Enokizono, IEEE T. Magn. 15, 911 (1979). https://doi.org/10.1109/TMAG.1979.1060174
  3. B. Viala, J. Degauque, M. Fagot, M. Baricco, E. Ferrara, and F. Fiorillo, Mater. Sci. Eng. A 212, 62 (1996). https://doi.org/10.1016/0921-5093(96)10188-X
  4. J. H. Yu, J. S. Shin, J. S. Bae, Z. H. Lee, T. D. Lee, and H. M. Lee, J. Korean Inst. Metals and Mater. 39, 394 (2001).
  5. J. S. Shin, J. S. Bae, H. J. Kim, H. M. Lee, T. D. Lee, E. J. Lavernia, and Z. H. Lee, Mater. Sci. Eng. A 407, 282 (2005). https://doi.org/10.1016/j.msea.2005.07.012
  6. Y. Liu, Z. Liu, S. Guo, Y. Du, B. Huang, J. Huang, S. Chen, and F. Liu, Intermetallics 13, 393 (2005). https://doi.org/10.1016/j.intermet.2004.07.026
  7. D. Singh and S. Dangwal, J. Mater. Sci. 41, 3853 (2006). https://doi.org/10.1007/s10853-006-6652-2
  8. H. J. Jung, Ph.D. Thesis, Hanyang University, Korea (2012).
  9. W. Ciurzynska, J. Zbroszczyk, J. Olszewski, J. Frackowiak, and K. Narita, J. Magn. Magn. Mater. 133, 351 (1994). https://doi.org/10.1016/0304-8853(94)90565-7
  10. D. Bouchara, M. Fagot, J. Detauque, and J. Bras, J. Magn. Magn. Mater. 83, 377 (1990). https://doi.org/10.1016/0304-8853(90)90554-4
  11. F. Faudot, J. F. Rialland, and J. Bigot, Physica Scripta 39, 263 (1989). https://doi.org/10.1088/0031-8949/39/2/013
  12. D. Ruiz, T. Ros-Yanez, L. Vandenbossche, L. Dupre, R. E. Vandenberghe, and Y. Houbaert, J. Magn. Magn. Mater. 290, 1423 (2005).
  13. F. Gonzalez and Y. Houbaert, Rev. Metal 49, 178 (2013). https://doi.org/10.3989/revmetalm.1223
  14. O. Kubaschewski, Iron-binary Phase Diagrams, Springer-Verlag, Berlin (1982).
  15. A. I. Al-Sharif, M. Abu-Jafar, and A. Qteish, J. Phys.: Condens. Matter. 13, 2807 (2001). https://doi.org/10.1088/0953-8984/13/12/305

Acknowledgement

Supported by : 청주대학교 산업과학연구소