DOI QR코드

DOI QR Code

Magnetic Field Dependence of Brownian Motion in Iron-oxide Nanoparticles

산화철 나노입자의 브라운 운동에 대한 자기장 의존성 연구

Jung, Eun Kyung;Yoon, Seok Soo;Kim, Dong Young
정은경;윤석수;김동영

  • Received : 2016.01.25
  • Accepted : 2016.02.17
  • Published : 2016.02.29

Abstract

The ac magnetic susceptibility was measured in iron-oxide nanoparticles with average size of 26 nm, which were uniformly dispersed in organic solvent. The ac magnetic susceptibility measured under zero magnetic fields was well fitted with Debye relaxation model and the relaxation frequency was 370 Hz. The relaxation frequency of the nanoparticles coincided with relaxation time of the Brownian motion, which is due to the viscosity of the liquid medium in which magnetic nanoparticles dwell. The Brown relaxation frequencies were linearly increased with magnetic field.

Keywords

nanoparticles;Ac magnetic susceptibility;brownian motion;relaxation frequency

References

  1. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, and R. N. Muller, Chem. Rev. 108, 2064 (2008). https://doi.org/10.1021/cr068445e
  2. N. K. Prasad, K. Rathinasamy, D. Panda, and D. Bahadur, J. Biomed. Mater. Part B: Appl. Biomater. 85B, 409 (2007).
  3. R. Hergt, S. Dutz, and M. Zeisberger, Nanotechnology 21, 015706 (2010). https://doi.org/10.1088/0957-4484/21/1/015706
  4. I. Hilger, W. Andera, R. Hergt, R. Hiergeist, H. Schubert, and W. A. Kaiser, Radiology 218, 570 (2001). https://doi.org/10.1148/radiology.218.2.r01fe19570
  5. J. Kliava and R. Berger, J. Magn. Magn. Mater. 205, 328 (1999). https://doi.org/10.1016/S0304-8853(99)00510-7
  6. Y. M. Jang and M. J. Hwang, J. Soc. Magn. Reson. Med. 7, 39 (2003).
  7. S. Vasseur, E. Duguet, J. Portier, G. Goglio, S. Mornet, E. Hadova, K. Knizek, M. Marysko, P. Veverka, and E. Pollert, J. Magn. Magn. Mater. 302, 315 (2006). https://doi.org/10.1016/j.jmmm.2005.09.026
  8. S. N. Ahmad, Y. Akin, and S. A. Shaheen, J. Appl. Phys. 97, 10Q902 (2005). https://doi.org/10.1063/1.1849052
  9. J. Carrey, B. Mehdaoui, and M. Respaud, J. Appl. Phys. 109, 083921 (2011). https://doi.org/10.1063/1.3551582
  10. B. H. Erne, M. Claesson, S. Sacanna, M. Klokkenburg, E. Bakelaar, and B. W. M. Kuipers, J. Magn. Magn. Mater. 311, 145 (2007). https://doi.org/10.1016/j.jmmm.2006.11.169
  11. R. M. Ferguson, A. P. Khandhar, C. Jonasson, J. Blomgren, C. Johansson, and K. M. Krishnan, IEEE Trans Magn. 49, 3442 (2013).
  12. P. C. Fannin, L. C. Tannoudji, E. Bertrand, A. T. Giannitsis, C. M. Oireachtaigh, and J. Bibette, J. Magn. Magn. Mater. 303, 147 (2006). https://doi.org/10.1016/j.jmmm.2005.07.035
  13. S. Berkum, J. T. Dee, A. P. Philipse, and Ben H. Erne, Int. J. Mol. Sci. 14, 10162 (2013). https://doi.org/10.3390/ijms140510162
  14. https://en.wikipedia.org/wiki/Dielectric#Debye_relaxation.
  15. G. F. Dionne, IEEE Trans. Magn. 39, 3121 (2003). https://doi.org/10.1109/TMAG.2003.816026

Acknowledgement

Supported by : 안동대학교