Photoluminescence and Concentration Quenching Properties of BaMoO4:Tb3+ Phosphors

BaMoO4:Tb3+ 형광체의 발광과 농도 소광 특성

Cho, Shinho;Kim, Jindae;Hwang, Donghyun;Cho, Seon-Woog

  • Received : 2015.11.12
  • Accepted : 2015.12.31
  • Published : 2016.02.27


$BaMoO_4:Tb^{3+}$ phosphor powders were synthesized with different concentrations of $Tb^{3+}$ ions using the solid-state reaction method. XRD patterns showed that all the phosphors, irrespective of the concentration of $Tb^{3+}$ ions, had tetragonal systems with two main (112) and (004) diffraction peaks. The excitation spectra of the $Tb^{3+}$-doped $BaMoO_4$ phosphors consisted of an intense broad band centered at 290 nm in the range of 230-330 nm and two weak bands. The former broad band corresponded to the $4f^8{\rightarrow}4f^75d^1$ transition of $Tb^{3+}$ ions; the latter two weak bands were ascribed to the $^7F_2{\rightarrow}^5D_3$ (471 nm) and $^7F_6{\rightarrow}^5D_4$ (492 nm) transitions of $Tb^{3+}$. The main emission band, when excited at 290 nm, showed a strong green band at 550 nm arising from the $^5D_4{\rightarrow}^7F_5$ transition of $Tb^{3+}$ ions. As the concentration of $Tb^{3+}$ increased from 1 to 10 mol%, the intensities of all the emission lines gradually increased, approached maxima at 10 mol% of $Tb^{3+}$ ions, and then showed a decreasing tendency with further increase in the $Tb^{3+}$ ions due to the concentration quenching effect. The critical distance between neighboring $Tb^{3+}$ ions for concentration quenching was calculated and found to be $12.3{\AA}$, which indicates that dipole-dipole interaction was the main mechanism for the concentration quenching of the $^5D_4{\rightarrow}^7F_5$ transition of $Tb^{3+}$ in the $BaMoO_4:Tb^{3+}$ phosphors.




  1. S. Shivakumara, R. Saraf, S. Behera, N. Dhananjaya and H. Nagabhushana, Spectrochim. Acta A, 151, 141 (2015).
  2. Y. Kojima, M. Numazawa, S. Kamei and N. Nishimiya, Int. J. Opt., 2012, 1 (2005).
  3. G. Zhu, Z. Ci, Y. Shi and Y. Wang, Mater. Res. Bull., 55, 146 (2014).
  4. Y. Li and X. Liu, Opt. Mater., 42, 303 (2015).
  5. X. Lin, X. Qiao and X. Fan, Solid State Sci., 13, 579 (2011).
  6. C. Shivakumara and R. Saraf, Opt. Mater., 42, 178 (2015).
  7. P. Yang, C. Li, W. Wang, Z. Quan, S. Gai and J. Lin, J. Solid State Chem., 182, 2510 (2009).
  8. P. Du and J. S. Yu, Mater. Res. Bull., 70, 553 (2015).
  9. X. F. Wang, G. H. Peng, N. Li, Z. H. Liang, X. Wang and J. L. Wu, J. Alloy. Comp., 599, 102 (2014).
  10. X. Li, Z. Yang, L. Guan and Q. Guo, Mater. Lett., 63, 1096 (2009).
  11. M. Tutuianu, O. R. Inderwildi, W. G. Bessler and J. Warnatz, J. Phys. Chem. B, 110, 17484 (2006).
  12. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, 2nd Ed., p. 131, John-Wiley and Sons, USA (1975).
  13. R. D. Shannon and C. T. Prewitt, Acta Crystallogr. B, 25, 925 (1969).
  14. Z. Hao, J. Zhang, X. Zhang, S. Lu and X. Wang, J. Electrochem. Soc., 156, H193 (2009).
  15. X. Mi, J. Sun, P. Zhou, H. Zhou, D. Song, K. Li, M. Shang and J. Lin, J. Mater. Chem. C, 3, 4471 (2015).
  16. J. D. Kim and S. Cho, Korean J. Mater. Res., 24, 469 (2014).
  17. J. Zhang, Y. Wang, Z. Zhang, Z. Wang and B. Liu, Mater. Lett., 62, 202 (2008).
  18. H. L. Li, Z. L. Wang, S. J. Xu and J. H. Hao, J. Electrochem. Soc., 156, J112 (2009).
  19. L. R. P. Kassab, R. de Almeida, D. M. da Silva and C. B. de Araujo, J. App. Phys., 104, 093531 (2008).
  20. L. Jiang, C. Chang, D. Mao and C. Feng, Mater. Sci. Eng. B., 103, 271 (2003).
  21. S. Cho, J. Korean Phys. Soc., 64, 1529 (2014).
  22. J. S. Kumar, K. Pavani, A. M. Babu, N. K. Giri, S. B. Rai and L. R. Moorthy, J. Lumin., 130, 1916 (2010).
  23. R. Naik, S. C. Prashantha, H. Nagabhushana, H. P. Nagaswarupa, K. S. Anantharaju, S. C. Sharma, B. M. Nagabhushana, H. B. Premkumar and K. M. Girish, J. Alloy. Comp., 617, 69 (2014).
  24. D. L. Dexter, J. Chem. Phys., 21, 836 (1953).
  25. S. Dutta, S. Som and S. K. Sharma, Dal. Trans., 42, 9654 (2013).