Recent Application Technology Trends Analysis of Zinc Sulfide: Based on Patent Information Analysis

황화아연의 응용 기술 최신 동향 분석: 특허정보분석을 중심으로

  • Received : 2015.11.30
  • Accepted : 2016.01.12
  • Published : 2016.02.27


Zinc Sulfide (ZnS) is one of the II-VI semiconducting materials, having novel fundamental properties and diverse areas of application such as light-emitting diodes (LEDs), electroluminescence, flat panel displays, infrared windows, catalyst, chemical sensors, biosensors, lasers and biodevices, etc. However, despite the remarkable versatility and prospective potential of ZnS, research and development (R&D) into its applications has not been performed in much detail relative to research into other inorganic semiconductors. In this study, based on global patent information, we analyzed recent technical trends and the current status of R&D into ZnS applications. Furthermore, we provided new technical insight into ZnS applicable fields using in-depth analysis. Especially, this report suggests that ZnS, due to its infrared-transmitting optical property, is a promising material in astronomy and military fields for lenses of infrared systems. The patent information analysis in this report will be utilized in the process of identifying the current positioning of technology and the direction of future R&D.


zinc sulfide(ZnS);semiconducting;infrared-transmitting;optical;patent information analysis;technology trend


  1. X. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wu, Y. Bando and D. Golberg, Prog. Mater. Sci., 56, 175 (2011).
  2. W. L. Davidson, Phys. Rev., 74, 116 (1948).
  3. J. Huang, Y. Yang, S. Xue, B. Yang, S. Liu and J. Shen, Appl. Phy. Lett., 70, 2335 (1997).
  4. S. Okur, N. Uzar, N. Tekguzel, A. Erol and M. Arikan, Physica E, 44, 1103 (2012).
  5. M. Bredol and J. Merichi, J. Mater. Sci., 33, 471 (1998).
  6. P. Calandra, M. Goffredi and V. T. Liveri, Colloids Surf. A, 9, 160 (1999).
  7. M. Y. Lu, J. Song, M. P. Lu, C. Y. Lee, L. J. Chen and Z. L. Wang, ACS Nano, 3, 357 (2009).
  8. M. Bilge, S. Kart, H. H. Kart and T. Cagin, JAMME, 31, 29 (2008).
  9. X. Fang, L. Wu and L. Hu, Adv. Mater., 23, 585 (2010).
  10. B. Y. Geng, G. Z. Wang, Z. Jiang, T. Xie, S. H. Sun, G. W. Meng and L. D. Zhang, Appl. Phys. Lett., 82, 4791 (2003).
  11. N. Karar, F. Singh and B. R. Mehta, J. Appl. Phys., 95, 656 (2004).
  12. R. Z. Stodilka, J. L. Carson, K. Yu, M. B. Zaman, C. Li and D. Wilkinson, J. Phys. Chem., 113, 2580 (2009).
  13. N. Liu, Y. Mu, Y. Chen, H. Sun, S. Han, M. Wang, H. Wang, Y. Li, Q. Xu, P. Huang and Z. Sun, Part. Fibre. Toxicol., 10, 37 (2013).
  14. B. J. Swift and F. Baneyx, PLoS One, 10, e0124916 (2015).
  15. J. P. Borah and K. C. Sarma, Acta. Physica. Polonica A, 114, 713 (2008).
  16. Y. C. Zhu, Y. Bondo and D. F. Xue, Appl. Phys. Lett., 82, 1769 (2003).
  17. P. Biswas, R. Senthil Kumar, P. Ramavath, V. Mahendar, G. V. N. Rao, U. S. Hareesh and R. Johnson, J. Alloy. Comp., 496, 273 (2010).
  18. R. Zamiri, D. M. Tobaldi, H. A. Ahangar, A. Rebelo, M. P. Seabra, M. S. Belsleyc and J. M. Ferreira, RSC Adv., 4, 35383 (2014).
  19. Y. Li and Y. Wu, J. Am. Ceram. Soc., 98, 2972 (2015).
  20. W. G. Li, D. J. Li, T. B. Cheng and D. N. Fang, J. Mech., 31, 449 (2015).
  21. Y. J. Yoo, K. S. Chang, S. W. Hong and Y. M. Song, Opt. Quant. Electron., 47, 1503 (2015).