DOI QR코드

DOI QR Code

Effects of prunetin on the proteolytic activity, secretion and gene expression of MMP-3 in vitro and production of MMP-3 in vivo

  • Nam, Dae Cheol (Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University) ;
  • Kim, Bo Kun (Department of Orthopedic Surgery, School of Medicine, Chungnam National University) ;
  • Lee, Hyun Jae (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Shin, Hyun-Dae (Department of Orthopedic Surgery, School of Medicine, Chungnam National University) ;
  • Lee, Choong Jae (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Hwang, Sun-Chul (Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University)
  • Received : 2016.01.15
  • Accepted : 2016.02.04
  • Published : 2016.03.01

Abstract

We investigated whether prunetin affects the proteolytic activity, secretion, and gene expression of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as in vivo production of MMP-3 in the rat knee joint to evaluate the potential chondroprotective effect of prunetin. Rabbit articular chondrocytes were cultured in a monolayer, and reverse transcriptionpolymerase chain reaction (RT-PCR) was used to measure interleukin-$1{\beta}$ (IL-$1{\beta}$)-induced expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), and ADAMTS-5. In rabbit articular chondrocytes, the effects of prunetin on IL-$1{\beta}$-induced secretion and proteolytic activity of MMP-3 were investigated using western blot analysis and casein zymography, respectively. The effect of prunetin on MMP-3 protein production was also examined in vivo. The results were as follows: (1) prunetin inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5; (2) prunetin inhibited the secretion and proteolytic activity of MMP-3; (3) prunetin suppressed the production of MMP-3 protein in vivo. These results suggest that prunetin can regulate the gene expression, secretion, and proteolytic activity of MMP-3, by directly acting on articular chondrocytes.

Acknowledgement

Grant : BK21플러스

Supported by : 충남대학교

References

  1. Aigner T, Mckenna L. Molecular pathology and pathobiology of osteoarthritic cartilage. Cell Mol Life Sci. 2002;59:5-18. https://doi.org/10.1007/s00018-002-8400-3
  2. Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg Am. 1982;64:460-466. https://doi.org/10.2106/00004623-198264030-00022
  3. Dean D, Martel-pelletier J, Pelletier JP, Howell DS, Woessner JFJ. Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J Clin Invest. 1989;84:678-685. https://doi.org/10.1172/JCI114215
  4. Kullich W, Fagerer N, Schwann H. Effect of the NSAID nimesulide on the radical scavenger glutathione S-transferase in patients with osteoarthritis of the knee. Curr Med Res Opin. 2007;23:1981-1986. https://doi.org/10.1185/030079907X223486
  5. Birkedal-hansen H, Moore WG, Bodden MK, et al. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993;4:197-250. https://doi.org/10.1177/10454411930040020401
  6. Burrage P, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis. Front Biosci. 2006;11:529-543. https://doi.org/10.2741/1817
  7. Garnero P, Rousseau JC, Delmas PD. Molecular basis and clinical use of biochemical markers of bone, cartilage, and synovium in joint diseases. Arthritis Rheum. 2000;43:953-968. https://doi.org/10.1002/1529-0131(200005)43:5<953::AID-ANR1>3.0.CO;2-Q
  8. Lin P, Chen CT, Torzilli PA. Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthritis Cartilage. 2004;12:485-496. https://doi.org/10.1016/j.joca.2004.02.012
  9. Yang G, Ham I, Choi HY. Anti-inflammatory effect of prunetin via the suppression of $NF-{\kappa}B$ pathway. Food Chem Toxicol. 2013;58:124-132. https://doi.org/10.1016/j.fct.2013.03.039
  10. Lee HJ, Lee SY, Lee MN, Kim JH, Chang GT, Seok JH, Lee CJ. Inhibition of secretion, production and gene expression of mucin from cultured airway epithelial cells by prunetin. Phytother Res. 2011;25:1196-1200. https://doi.org/10.1002/ptr.3362
  11. Ryu J, Lee HJ, Park SH, Sikder MA, Kim JO, Hong JH, Seok JH, Lee CJ. Effect of prunetin on $TNF-{\alpha}$-induced MUC5AC mucin gene expression, production, degradation of $I{\kappa}B$ and translocation of $NF-{\kappa}B$ p65 in human airway epithelial cells. Tuberc Respir Dis (Seoul). 2013;75:205-209. https://doi.org/10.4046/trd.2013.75.5.205
  12. Ahn TG, Yang G, Lee HM, Kim MD, Choi HY, Park KS, Lee SD, Kook YB, An HJ. Molecular mechanisms underlying the anti-obesity potential of prunetin, an O-methylated isoflavone. Biochem Pharmacol. 2013;85:1525-1533. https://doi.org/10.1016/j.bcp.2013.02.020
  13. Sheikh S, Weiner H. Allosteric inhibition of human liver aldehyde dehydrogenase by the isoflavone prunetin. Biochem Pharmacol. 1997;53:471-478. https://doi.org/10.1016/S0006-2952(96)00837-4
  14. Moon PD, Jeong HS, Chun CS, Kim HM. Baekjeolyusin-tang and its active component berberine block the release of collagen and proteoglycan from $IL-1{\beta}$-stimulated rabbit cartilage and down-regulate matrix metalloproteinases in rabbit chondrocytes. Phytother Res . 2011;25:844-850. https://doi.org/10.1002/ptr.3353
  15. Skehan P1, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82:1107-1112. https://doi.org/10.1093/jnci/82.13.1107
  16. Bonnet C, Walsh DA. Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford). 2005;44:7-16. https://doi.org/10.1093/rheumatology/keh344
  17. Goldring MB, Otero M, Tsuchimochi K, Ijiri K, Li Y. Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann Rheum Dis. 2008;67(Suppl 3):iii75-iii82.
  18. Kobayashi M, Squires GR, Mousa A, Tanzer M, Zukor DJ, Antoniou J, Feige U, Poole AR. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum. 2005;52:128-135. https://doi.org/10.1002/art.20776
  19. Loeser RF. Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators, and aging collide. Arthritis Rheum. 2006;54:1357-1360. https://doi.org/10.1002/art.21813
  20. Aida Y, Maeno M, Suzuki N, Shiratsuchi H, Motohashi M, Matsumura H. The effect of IL-1beta on the expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human chondrocytes. Life Sci. 2005;77:3210-3221. https://doi.org/10.1016/j.lfs.2005.05.052
  21. Pantsulaia I, Kalichman L, Kobyliansky E. Association between radiographic hand osteoarthritis and RANKL, OPG and inflammatory markers. Osteoarthritis Cartilage. 2010;18:1448-1453. https://doi.org/10.1016/j.joca.2010.06.009
  22. Lijnen HR. Matrix metalloproteinases and cellular fibrinolytic activity. Biochemistry Mosc. 2002;67:92-98. https://doi.org/10.1023/A:1013908332232
  23. Freemont AJ, Hampson V, Tilman R, Goupille P, Taiwo Y, Hoyland JA. Gene expression of matrix metalloproteinases 1, 3, and 9 by chondrocytes in osteoarthritic human knee articular cartilage is zone and grade specific. Ann Rheum Dis. 1997;56:542-549. https://doi.org/10.1136/ard.56.9.542
  24. Goupille P, Jayson MI, Valat JP, Freemont AJ. Matrix metalloproteinases: the clue to intervertebral disc degeneration? Spine (Phila Pa 1976). 1998;23:1612-1626. https://doi.org/10.1097/00007632-199807150-00021
  25. Kanyama M, Kuboki T, Kojima S, Fujisawa T, Hattori T, Takigawa M, Yamashita A. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids of patients with temporomandibular joint osteoarthritis. J Orofac Pain. 2000;14:20-30.
  26. Jo H, Park JS, Kim EM, Jung MY, Lee SH, Seong SC, Park SC, Kim HJ, Lee MC. The in vitro effects of dehydroepiandrosterone on human osteoarthritic chondrocytes. Osteoarthritis Cartilage. 2003;11:585-594. https://doi.org/10.1016/S1063-4584(03)00094-3
  27. Little CB, Barai A, Burkhardt D, Smith SM, Fosang AJ, Werb Z, Shah M, Thompson EW. Little C, Barai A, Burkhardt D, et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 2009;60:3723-3733. https://doi.org/10.1002/art.25002
  28. Neuhold LA, Killar L, Zhao W, Sung ML, Warner L, Kulik J, Turner J, Wu W, Billinghurst C, Meijers T, Poole AR, Babij P, DeGennaro LJ. Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J Clin Invest. 2001;107:35-44. https://doi.org/10.1172/JCI10564
  29. Yoshihara Y, Nakamura H, Obata K, Yamada H, Hayakawa T, Fujikawa K, Okada Y. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann Rheum Dis. 2000;59:455-461. https://doi.org/10.1136/ard.59.6.455
  30. Echtermeyer F, Bertrand J, Dreier R, Meinecke I, Neugebauer K, Fuerst M, Lee YJ, Song YW, Herzog C, Theilmeier G, Pap T. Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat Med. 2009;15:1072-1076. https://doi.org/10.1038/nm.1998
  31. Stanton H, Rogerson FM, East CJ, Golub SB, Lawlor KE, Meeker CT, Little CB, Last K, Farmer PJ, Campbell IK, Fourie AM, Fosang AJ. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature. 2005;434:648-652. https://doi.org/10.1038/nature03417