DOI QR코드

DOI QR Code

Fabrication and Property Evaluation of Cu-Mn Compacts for Sputtering Target Application by a Pulsed Current Activated Sintering Method

펄스전류활성소결법을 이용한 스퍼터링 타겟용 Cu-Mn 소결체 제조 및 특성평가

  • Received : 2016.01.11
  • Accepted : 2016.01.29
  • Published : 2016.02.28

Abstract

Cu-Mn compacts are fabricated by the pulsed current activated sintering method (PCAS) for sputtering target application. For fabricating the compacts, optimized sintering conditions such as the temperature, pulse ratio, pressure, and heating rate are controlled during the sintering process. The final sintering temperature and heating rate required to fabricate the target materials having high density are $700^{\circ}C$ and $80^{\circ}C/min$, respectively. The heating directly progresses up to $700^{\circ}C$ with a 3 min holding time. The sputtering target materials having high relative density of 100% are fabricated by employing a uniaxial pressure of 60 MPa and a sintering temperature of $700^{\circ}C$ without any significant change in the grain size. Also, the shrinkage displacement of the Cu-Mn target materials considerably increases with an increase in the pressure at sintering temperatures up to $700^{\circ}C$.

Keywords

Cu-Mn;Pulsed current activated sintering;Thin film;Sintering;Sputtering target

References

  1. G. Bertrand, S. Deleonibus, B. Previtali, G. Guegan, X. Jehl, M. Sanquer and F. Balestra: Solid-State Electron, 48, (2004) 505. https://doi.org/10.1016/j.sse.2003.09.026
  2. H. C. Kim, I. J. Shon and Z. A. Munir: J. Mater. Sci., 40, (2005) 2849. https://doi.org/10.1007/s10853-005-2422-9
  3. H. C. Kim, D. Y. Oh and I. J. Shon: Int. J. of Refract. Met. and Hard Mater., 22, (2004) 197. https://doi.org/10.1016/j.ijrmhm.2004.06.006
  4. H. C. Kim, H. K. Park, I. K. Jeong, I. Y. Ko and I. J. Shon: Cermics Int., 34, (2008) 1419. https://doi.org/10.1016/j.ceramint.2007.03.029
  5. G. Bernard-Granger and C. Guizard: Acta Mater., 55, (2007) 3493. https://doi.org/10.1016/j.actamat.2007.01.048
  6. Z. Shen, M. Johnsson, Z. Zhao and M. Nygren: J. Am. Ceram. Soc., 85 (2002) 1921. https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  7. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade and P. Asoka-Kummar: Appl. Phys. Lett., 85 (2004) 573.
  8. J. R. Friedman, J. E. Garay, U. Anselmi-Tamburini and Z. A. Munir: Intermetallics, 12 (2004) 589. https://doi.org/10.1016/j.intermet.2004.02.005
  9. J. E. Garay, U. Anselmi-Tamburini and Z. A. Munir: Acta Mater., 51 (2003) 4487. https://doi.org/10.1016/S1359-6454(03)00284-2
  10. H. C. Kim, I. J. Shon, I. K. Jeong and I. Y. Ko: Metals and Mat. Interna, 12 (2006) 393. https://doi.org/10.1007/BF03027705
  11. C. Suryanarayana and M. Grant Norton: X-ray diffraction a practical approach, Plenum Press, New York (1998).

Cited by

  1. Fabrication and Mechanical Property of Fe-20Cu-1C Compacts by SPS process with Different Heating Rate vol.24, pp.4, 2017, https://doi.org/10.4150/KPMI.2017.24.4.302