Au 플라워가 성장된 하이브리드형 탄소 나노튜브 마이크로 섬유 기반 유연한 고민감성 압력 센서 연구

Kim, So Young;Kim, Do Hwan

  • 투고 : 2015.12.18
  • 심사 : 2016.02.12
  • 발행 : 2016.02.29


Pressure-sensitive electronic skin (e-skin) has gained importance in the fields of prosthetics, health monitoring, sensitive tactile information display, and robotics. In particular, many previous studies have reported flexible and highly sensitive pressure sensors. Among them, e-skin devices based on CNT microfibers show wearable and excellent multimodal (pressure, temperature, humidity, and presence of chemicals) sensing capabilities However, the low sensitivity of these devices at high pressures remains a critical issue. Here, we report on highly flexbile and sensitive e-skin devices prepared by carbon nanotube (CNT) microfibers hybridized with Au flowers, which were synthesized by electrochemical methods. First, we controlled the voltage and reaction time in order to optimize the surface morphology of the CNT microfibers. Next, we fabricated capacitive pressure sensors to elucidate the impact of Au flowers on the sensing capability of the CNT microfiber-based pressure sensors, especially in high pressure regimes. The sensors based on CNT microfibers with Au flowers showed fourfold higher sensitivity than did those without the Au flowers, due to the enhanced air traps between the Au flowers. Furthermore, this morphology of CNT microfibers with Au flowers demonstrated satisfactory repeatability and durability under high pressure.


electronic skin;CNT microfibers with Au flowers;pressure sensor;high sensitivity


  1. M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. Bao, "25th Anniversary Article: The Evolution of Electronic Skin (E‐Skin): A Brief History, Design Considerations, and Recent Progress", Adv. Mater., 2013, 25, 5997-6038.
  2. D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T.-I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. M. Cormick, P. Liu, Y.-W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, and J. A. Rogers, "Epidermal Electronics", Science, 2011, 333, 838-843.
  3. K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, and A. Javey, "Nanowire Active-matrix Circuitry for Low-voltage Macroscale Artificial Skin", Nat. Mater., 2011, 9, 821-826.
  4. T. Sekitani and T. Someya, “Stretchable Organic Integrated Circuits for Large-area Electronic Skin Surfaces”, Mrs Bulletin, 2012, 37, 236-245.
  5. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, "A Large-area, Flexible Pressure Sensor Matrix with Organic Field-effect Transistors for Artificial Skin Applications", Proc. Natl. Acad. Sci. USA, 2004, 101, 9966-9970.
  6. S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, and R. Schwodiauer, "25th Anniversary Article: A Soft Future: from Robots and Sensor Skin to Energy Harvesters", Adv. Mater., 2014, 26, 149-162.
  7. K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, and M. Korobov, “Organic Solvent Dispersions of Single-walled Carbon Nanotubes: Toward Solutions of Pristine Nanotubes”, J. Phys. Chem. B, 2000, 104, 8911-8915.
  8. D.-H. Kim and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 2008, 20, 4887-4892.
  9. A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, and R. H. Baughman, "Super-tough Carbon-nanotube Fibres", Nature, 2003, 423, 703-703.
  10. K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, and A. Windle, “High-performance Carbon Nanotube Fiber”, Science, 2007, 318, 1892-1895.
  11. X.-H. Zhong, Y.-L. Li, Y.-K. Liu, X.-H. Qiao, Y. Feng, J. Ling, J. Jin, L. Zhu, F. Hou, and J.-Y. Li, "Continuous Multilayered Carbon Nanotube Yarns", Adv. Mater., 2010, 22, 692-696.
  12. X. Zhang, Q. Li, T. G. Holesinger, P. N. Arendt, J. Huang, P. D. Kirven, T. G. Clapp, R. F. DePaula, X. Liao, Y. Zhao, L. Zheng, D. E. Peterson, and Y. Zhu, "Ultrastrong, Stiff, and Lightweight Carbon-nanotube Fibers", Adv. Mater., 2007, 19, 4198.
  13. S. Y. Kim, S. Park, H. W. Park, D. H. Park, Y. Jeong, and D. H. Kim, "Highly Sensitive and Multimodal All‐Carbon Skin Sensors Capable of Simultaneously Detecting Tactile and Biological Stimuli", Adv. Mater., 2015, 27, 4178-4185.
  14. S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, and Z. Bao, "Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers", Nat. Mater., 2010, 9, 859-864.
  15. G. Schwartz, B. C. K. Tee, J. Mei, A. L. Appleton, D. H. Kim, H. Wang, and Z. Bao, "Flexible Polymer Transistors with High Pressure Sensitivity for Application in Electronic Skin and Health Monitoring", Nat. Comm., 2013, 4, 1859.
  16. X. Wang, Y. Gu, Z. Xiong, Z. Cui, and T. Zhang, "Silk‐Molded Flexible, Ultrasensitive, and Highly Stable Electronic Skin for Monitoring Human Physiological Signals", Adv. Mater., 2014, 26, 1336-1342.
  17. B. Zhu, Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Li, and X. Chen, “Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors”, Small, 2014, 10, 3625-3631.
  18. C. L. Choong, M. B. Shim, B. S. Lee, S. Jeon, D. S. Ko, T. H. Kang, and Y. J. Jeong, "Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array", Adv. Mater., 2014, 26, 3451-3458.
  19. Y. Jung, J. Song, W. Huh, D. Cho, and Y. Jeong, "Controlling the Crystalline Quality of Carbon Nanotubes with Processing Parameters from Chemical Vapor Deposition Synthesis", Chem. Eng. J., 2013, 228, 1050-1056.
  20. J. Song, S. Yoon, S. Kim, D. Cho, and Y. Jeong, "Effects of Surfactant on Carbon Nanotube Assembly Synthesized by Direct Spinning", Chem. Eng. Sci., 2013, 104, 25-31.
  21. J. Song, S. Kim, S. Yoon, D. Cho, and Y. Jeong, "Enhanced Spinanbility of Carbon Nanotube Fibers by Surfactant Addition", Fiber. Polym., 2014, 15, 762-766.


연구 과제 주관 기관 : National Research Foundation of Korea