DOI QR코드

DOI QR Code

Improved Ethanol Gas Sensing Performance of α-Fe2O3 Nanoparticles by the Addition of NiO Nanoparticles

NiO의 첨가에 따른 α-Fe2O3 나노입자 센서의 에탄올 가스 검출 특성 향상

Park, Sunghoon;Kang, Wooseung
박성훈;강우승

  • Received : 2016.01.22
  • Accepted : 2016.02.12
  • Published : 2016.02.29

Abstract

In order to investigate the effect of NiO on the ethanol gas sensing performance of ${\alpha}-Fe_2O_3$ nanoparticles, NiO and ${\alpha}-Fe_2O_3$ nanoparticles are synthesized by hydrothermal method. The sensor with ${\alpha}-Fe_2O_3$ and NiO nanoparticles mixed at an optimum ratio of 7:3 showed 3.8 times improved sensing performance for 200ppm ethanol gas at $200^{\circ}C$. The enhanced gas sensing performance can be considered to be caused by pn heterojunction at the grain boundaries of ${\alpha}-Fe_2O_3$ and NiO nanopartcles.

Keywords

${\alpha}-Fe_2O_3$;NiO;Nanoparticles;Ethanol;Gas sensor

References

  1. Zhiyoung Fan, Xiaogang Wen, Shihe Yang, Jia Grace Lu, Controlled p- and n-Type Doping of $Fe_2O_3$ Nanobelt Field Effect Trnasistors, Appl. Phys. Lett., 87 (2005) 013113-3. https://doi.org/10.1063/1.1977203
  2. Yuanhui Zheng, Yao Cheng, Yuansheng Wang, Feng Bao, Lihua Zhou, Xiaofeng Wei, Yingying Zhang, Qi Zheng, Quasicubic ${\alpha}-Fe_2O_3$ Nanoparticles with Excellent Catalytic Performance, J. Phys. Chem. B, 110 (2006) 3093-3097.
  3. Jiwei Deng, Jianmin Ma, Lin Mei, Yunjing Tang, Yuejiao Chen, Ting Lv, Zhi Xu, Taihong Wang, Porous ${\alpha}-Fe_2O_3$ Nanosphere-Based $H_2S$ Sensor with Fast Response, High Selectivity and Enhanced Sensitivity, J. Mater. Chem. A, 1 (2013) 12400-12403. https://doi.org/10.1039/c3ta12253k
  4. Jin-San Xu, Ying-Jie Zhu, Monodisperse $Fe_3O_4$ and ${\gamma}-Fe_2O_3$ Magnetic Mesoporous Microspheres as Anode Materials for Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 4 (2012) 4752-4757. https://doi.org/10.1021/am301123f
  5. Ri Yu, Jae-Hwan Pee, Yoo Jin Kim, Color Evolution and Phase Transformation Behaviors of Core-Shell Yellow Iron(III) Oxy-Hydroxide Pigments, J. Nanosci. Nanotechnol., 14 (2014) 2667-2669. https://doi.org/10.1166/jnn.2014.8482
  6. Vishal M Dhvale, Sreekumar Kurungot, Tuning the Performance of Low-Pt Polymer Electrolyte Membrane Fuel Cell Electodes Derived from $Fe_2O_3@Pt/C$ Core-Shell Catalyst Prepared by an in Situ Anchoring Strategy, J. Phys. Chem. C, 116 (2012) 7318-7326. https://doi.org/10.1021/jp300628j
  7. Kevin Sivula, Florian Le Formal, Michael Gratzel, $WO_3-Fe_2O_3$ Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach, Chem. Mater., 21 (2009) 2862-2867. https://doi.org/10.1021/cm900565a
  8. Idalia Bilecka, Markus Niederberger, Microwave Chemistry for Inorganic Nanomaterials Synthesis, Nanoscale, 2 (2010) 1358-1374. https://doi.org/10.1039/b9nr00377k
  9. Michael R. Ivanov, and Amanda J. Haes, Nanomaterial Surface Chemistry Design for Advancements in Capillary Electrophoresis Modes, Analyst, 136 (2011) 54-63. https://doi.org/10.1039/C0AN00458H
  10. Gopala Krisshna Darbha, Anandhi Ray, Paresh Chandra Ray, Gold Nanoparticle-Based Miniaturized Nanomaterial Surface Energy Transfer Probe for Rapid and Ultrasensitive Detection of Mercury in Soil, Water, and Fish, ACS Nano, 1 (2007) 208-214. https://doi.org/10.1021/nn7001954
  11. Jukka Sund, Harri Alenius, Minnamari Vippola, Kai Savolainen, Anne Puustinen, Proteomic Characterization of Engineered Nanomaterial-Protein Interactions in Relation to Surface Reactivity, ACS Nano, 6 (2011) 4300-4309.
  12. J. Qu, X.P. Gao, G.R. Li, Q.W. Jiang, and T.Y. Yan, Structure Transformation and Photoelectrochemical Properties of $TiO_2$ Nanomaterials Calcined from Titanate Nanotubes, J. Phys. Chem. C, 113 (2009) 3359-3363. https://doi.org/10.1021/jp810692t
  13. Tanushree Ghosh, Brian M. Leonard, Qin Zhou, Francis J. DiSalvo, Pt Alloy and Intermetallic Phases with V, Cr, Mn, Ni, and Cu: Synthesis As Nanomaterials and Possible Applications As Fuel Cell Catalysts, Chem. Mater., 22 (2010) 2190-2202. https://doi.org/10.1021/cm9018474
  14. Jun Yao, Mei Yang, Yixiang Duan, Chemistry, Biology, and Medicine of Fluorescent Nanomaterials and Related Systems: New Insights into Biosensing, Bioimaging, Genomics, Diagnostics, and Therapy, Chem. Rev., 114 (2014) 6130-3178. https://doi.org/10.1021/cr200359p
  15. Zongyou Yin, Xiao Zhang, Yongqing Cai, Junze Chen, Jen It Wong, Yee-Yan Tay, Jianwei Chai, Jumiati Wu, Zhiyuan Zeng, Bing Zheng, Hui Ying Yang, Hua Zhang, Preparation of $MoS_2-MoO_3$ Hybrid Nanomaterials for Light-Emitting Diodes, Angew. Chem. Int. Ed., 53 (2014) 12560-12565.
  16. Jian-Jun Wang, Jin-Song Hu, Yu-Guo Guo, Li-Jun Wan, Eco-Friendly Visible-Wavelength Photodetectors Based on Bandgap Engineerable Nanomaterials, J. Mater. Chem., 21 (2011) 17582-17589. https://doi.org/10.1039/c1jm12173a
  17. Jin Joo, Jae Sung Son, Soon Gu Kwon, Jung Ho Yu, Taeghwan Hyeon, Low-Temperature Solution-Phase SYnthesis of Quantum Well Structured CdSe Nanoribbons, J. Am. Chem. Soc., 128 (2006) 5632-5633. https://doi.org/10.1021/ja0601686
  18. Wen-Ya Li, Li-Na Xu, Jun Chen, $Co_3O_4$ Nanomaterials in Lithium-Ion Batteries and Gas Sensors, Adv. Funct. Mater., 15 (2005) 851-857. https://doi.org/10.1002/adfm.200400429
  19. Daejong Yang, M. Kasyful Fuadi, Kyungnam Kang, Donghwan Kim, Zhiyong Li, Inkyu Park, Multiplexed Gas Sensor Based on Heterogeneous Metal Oxide Nanomaterial Array Enabled by Localized Liquid-Phase Reaction, ACS Appl. Mater. Interfaces, 7 (2015) 10152-10161. https://doi.org/10.1021/acsami.5b00110
  20. Sophie F. Liu, Lionel C. Moh, Timothy M. Swager, Single-Walled Carbon Nanotube-Metalloporphyrin Chemiresistive Gas Sensor Arrays for Volatile Organic Compounds, Chem. Mater., 27 (2015) 3560-3563. https://doi.org/10.1021/acs.chemmater.5b00153
  21. Feng Shao, Martin W.G. Hoffmann, Joan Daniel Prades, Reza Zamani, Jordi Arbiol, Joan Ramon Morante, Elena Varechkina, Marina Rumyantseva, Alexandre Gaskov, Irina Giebelhaus, Thomas Fischer, Sanjay Mathur, Francisco Hernandez-Ramirez, Heterostructured p-CuO (Nanoparticles)/n-$SnO_2$ (Nanowire) Devices for Selective $H_2S$ Detection, Sens. Actuators B, 181 (2013) 130-135. https://doi.org/10.1016/j.snb.2013.01.067
  22. Chan Woong Na, Hyung-Sik Woo, Jong-Heun Lee, Design of Highly Sensitive Volatile Organic COmpounds Sensors by Controlling NiO Loading on ZnO Nanowire Networks, RSC Adv., 2 (2012) 414-417. https://doi.org/10.1039/C1RA01001H
  23. Yuxin Nie, Ping Deng, Yayu Zhao, Penglei Wang, Lili Xing, Yan Zhang, Xinyu Xue, The Conversion of PN-Junction Influencing the Piezoelectric Output of a CuO/ZnO Nanoarray Nanogenerator and Its Application as a Room-Temperature Self-Powered Active $H_2S$ Sensor, Nanotechnol. 25 (2014) 265501-9. https://doi.org/10.1088/0957-4484/25/26/265501
  24. Yuejiao Chen, Ling Yu, Dandan Feng, Ming Zhuo, Ming Zhang, Endi Zhang, Zhi Xu, Qiuhong Le, Taihong Wang, Superior Ethanol-Sensing Properties Based on Ni-Doped $SnO_2$ p-n Heterojunction Hollow Spheres, Sens. Actuators B, 166-167 (2012) 61-67. https://doi.org/10.1016/j.snb.2011.12.018