DOI QR코드

DOI QR Code

The Effect of Dust Emissions on PM10 Concentration in East Asia

황사 배출량이 동아시아 지역 PM10 농도에 미치는 영향

  • Received : 2015.11.17
  • Accepted : 2015.12.29
  • Published : 2016.02.29

Abstract

The anthropogenic aerosols originated from the pollutant emissions in the eastern part of China and dust emitted in northwestern China in Yellow sand regions are subsequently transported via eastward wind to the Korean peninsula and then these aerosols induce high $PM_{10}$ concentrations in Korean peninsula. In order to estimate air quality considering anthropogenic and dust emissions, Comprehensive Air-quality Model with extension (CAMx) was applied to simulate $PM_{10}$ concentration. The predicted $PM_{10}$ concentrations without/with dust emissions were compared with observations at ambient air quality monitoring sites in China and Korea for 2008. The predicted $PM_{10}$ concentrations with dust emissions could depict the variation of measured $PM_{10}$ especially during Yellow sand events in Korea. The comparisons also showed that predicted $PM_{10}$ concentrations without dust emissions were under-predicted while predictions of $PM_{10}$ concentrations with dust emission were in good agreement with observations. This implied that dust emissions from desert and barren soil in southern Mongolia and northern China minimized the discrepancies in the $PM_{10}$ predictions in East Asia. The effect of dust emission on annual $PM_{10}$ concentrations in Korea Peninsula for year 2008 was $5{\sim}10{\mu}g/m^3$, which were about 20% of observed annual $PM_{10}$ concentrations.

Keywords

CAMx;PM;Dust emission;ADAM2

References

  1. Koo, Y.S., D.R. Choi, H.Y. Kwon, J.Y. Jang, and J.S. Han (2015) Improvement of $PM_{10}$ prediction in East Asia using inverse modeling, Atmos. Envrion., 106, 318-328. https://doi.org/10.1016/j.atmosenv.2015.02.004
  2. Lee, D., Y. Lee, K. Jang, C. Yoo, K. Kang, J. Lee, S. Jung, J. Park, S. Lee, J. Han, J. Hong, and S. Lee (2011b) Korean National Emissions Inventory System and 2007 Air Pollutant Emissions, Asian Journal of Atmos. Environ., 5(4), 278-291. https://doi.org/10.5572/ajae.2011.5.4.278
  3. Lee, E.H. and S.U. Park (2005) A numerical simulation of an Asian dust (Hwangsa) event observed in Korea on March 10-12, 2004 using the modified ADAM model, Adv. Geosci., 5, 67-76.
  4. Lee, S., C.H. Ho, and Y.S. Choi (2011a) High-$PM_{10}$ concentration episodes in Seoul, Korea: background sources and related meteorological conditions. Atmos. Environ., 45(39), 7240-7247. http://dx.doi.org/10.1016/j.atmosenv.2011.08.071 https://doi.org/10.1016/j.atmosenv.2011.08.071
  5. Lee, S., C.H. Ho, Y.G. Lee, H.J. Choi, and C.K. Song (2013) Influence of transboundary air pollutants from China on the high $PM_{10}$ episode in Seoul, Korea for the period October 16-20, 2008, Atmos. Environ., 77, 430-439. http://dx.doi.org/10.1016/j.atmosenv.2013.05.006 https://doi.org/10.1016/j.atmosenv.2013.05.006
  6. National Institute of Meteorological Research (2009) Report of Hwangsa on 2008.
  7. Park, S.U., A. Choe, E.H. Lee, M.S. Park, and X. Song (2010) The Asian Dust Aerosol Model2 (ADAM2) with the use of Normalized Difference Vegetation Index (NDVI) obtained from the Spot4/vegetation data, Theor. Appl. Climatol., 101(1), 191-208, doi:10.1007/s00704-009-0244-4. https://doi.org/10.1007/s00704-009-0244-4
  8. Park, S.U., J.H. Cho, and M.S. Park (2013) Analyses of high aerosol concentration events (dense haze/mist) occurred in East Asia during 10-16 January 2013 using the data simulated by the Aerosol Modeling System, Int. J. Chem., 2(3), 10-26.
  9. Koo, Y.S., S.T. Kim, H.Y. Yun, J.S. Han, J.Y. Lee, K.H. Kim, and E.C. Jeon (2008) The simulation of aerosol transport over East Asia region, Atmos. Res., 90(2-4), 264-271. https://doi.org/10.1016/j.atmosres.2008.03.014
  10. Koo, Y.S., S.T. Kim, J.S. Cho, and Y.K. Jang (2012) Performance evaluation of the updated air quality forecasting system for Seoul predicting $PM_{10}$, Atmos. Environ., 58, 56-69. https://doi.org/10.1016/j.atmosenv.2012.02.004
  11. Borge, R., J. Lopez, J. Lumbreras, A. Narros, and E. Rodriguez (2010) Influence of boundary conditions on CMAQ simulations over the Iberian Peninsula, Atmos. Environ., 44(23), 2681-2695. https://doi.org/10.1016/j.atmosenv.2010.04.044
  12. Choi, Y.J. and H.J.S. Fernando (2008) Implementation of a windblown dust parameterization into MODELS-3/CMAQ: Application to episodic PM events in the US/Mexico border, Atmos. Environ. 42(24), 6039-6046.
  13. ENVIRON (2012) User's guide to the Comprehensive Air Quality Model with Extensions (CAMx). Version 6.0. Available at: http://www.camx.com
  14. Gillette, D.A. and R. Passi (1988) Modeling dust emission caused by wind erosion, J. Geophys. Res., 93(D11), 14233-14242, doi:10.1029/JD093iD11p14233. https://doi.org/10.1029/JD093iD11p14233
  15. Han, X., C. Ge, J. Tao, M. Zhang, and R. Zhang (2012) Air Quality Modeling for a Strong Dust Event in East Asia in March 2010, Aerosol Air Qual. Res., 12(4), 615-628, doi:10.4209/aaqr.2011.11.0191. https://doi.org/10.4209/aaqr.2011.11.0191
  16. Han, Z., H. Ueda, K. Matsuda, R. Zhang, K. Argo, Y. Kanai, and H. Hasome (2004) Model study on particle size segregation and deposition during Asian dust events in March 2002, J. Geophys. Res., 109(D19), doi: 10.1029/2004JD004920. https://doi.org/10.1029/2004JD004920
  17. Huang, K., G. Zhuang, Q. Wang, J.S. Fu, Y. Lin, T. Liu, L. Han, and C. Deng (2014) Extreme haze pollution in beijing during january 2013: chemical characteristics formation mechanism and role of fog processing, Atmos. Chem. Phys. Discuss., 14, 7517-7556. https://doi.org/10.5194/acpd-14-7517-2014
  18. In, H.J. and S.U. Park (2002) A simulation of long-range transport of Yellow Sand observed in April 1998 in Korea, Atmos. Environ., 36(26), 4173-4187. https://doi.org/10.1016/S1352-2310(02)00361-8
  19. In, H.J. and S.U. Park (2003) The soil particle size-dependent emission parameterization for an Asian dust (Yellow Sand) observed in Korea on April 2002, Atmos. Environ., 37(33), 4625-4636. https://doi.org/10.1016/j.atmosenv.2003.07.009
  20. Jang, Y.G. and J. Kim (2011) Developing the PM emission inventories in Korea, Air Quality Modeling in Asia, 2011, 24-25.
  21. Ji, D., L. Liang, Y. Wang, J. Zhang, M. Cheng, Y. Sun, Z. Liu, L. Wang, G. Tang, B. Hu, N. Chao, and T. Wen (2014) The heaviest particulate air-pollution episodes occurred in northern China in January, 2013: Insights gained from observation, Atmos. Environ., 92, 546-556. https://doi.org/10.1016/j.atmosenv.2014.04.048
  22. Skamarock, W.C. and J.B. Klemp (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, J. Comput. Phys., 227, 3465-3485. https://doi.org/10.1016/j.jcp.2007.01.037
  23. The China National Environmental Monitoring Centre (2007) Technological Rules Concerned "Ambient Air Quality Daily Report".
  24. U.S. Environmental Protection Agency (2007) Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, $PM_{2.5}$, and Regional Haze, Office of Air Quality Planning and Standards, Air Quality Analysis Division, Air Quality Modeling Group, Research Triangle Park, North Carolina.
  25. Wang, H., J. An, L. Shen, B. Zhu, C. Pan, L. Zirui, X. Liu, Q. Duan, X. Liu, and Y. Wang (2014b) Mechanism for the formation and microphysical characteristics of submicron aerosol during heavy haze pollution episode in the Yangtze River Delta, China, Sci. Total Envrion., 490, 501-508. https://doi.org/10.1016/j.scitotenv.2014.05.009
  26. Wang, K., Y. Zhang, A. Nenes, and C. Fountoukis (2012) Implementation of dust emission and chemistry into the Community Multiscale Air Quality modeling system and initial application to an Asian dust storm episode, Atmos. Chem. Phys., 12, 10209-10237. https://doi.org/10.5194/acp-12-10209-2012
  27. Wang, Y., L. Yao, L. Wang, Z. Liu, D. Ji, G. Tnag, J. Zhang, Y. Sun, H. Bo, and J. Xin (2014a) Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China, Science China, Earth Sciences, 57(1), 14-25.
  28. Willmott, C.J. (1981) On the validation of models. Phys. Geogr., 2, 184-194.
  29. Willmott, C.J. (1982) Some comments on the evaluation of model performance. Bull. Amer. Meteorol. Soc., 63(11), 1309-1313. https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
  30. Yarwood, G., S. Rao, M. Yocke, and G. Whitten (2005) Updates to the carbon bond chemical mechanism: CB05. Final report to the U.S. EPA, RT-0400675.
  31. Zhang, Q., D.G. Streets, G.R. Carmichael, K.B. He, H. Huo, A. Kannari, Z. Klimont, I.S. Park, S. Reddys, J.S. Fu, D. Chem, L. Duan, Y. Lei, L.T. Wang, and Z.L. Yao (2009) Asian emission in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131-5153. https://doi.org/10.5194/acp-9-5131-2009

Cited by

  1. A Study on the Utilization of Air Quality Model to Establish Efficient Air Policies: Focusing on the Improvement Effect of PM2.5 in Chungcheongnam-do due to Coal-fired Power Plants Shutdown vol.34, pp.5, 2018, https://doi.org/10.5572/KOSAE.2018.34.5.687
  2. A Development of Particulate Matter Forecasting System with Inverse Modeling using Source Contribution vol.34, pp.6, 2018, https://doi.org/10.5572/KOSAE.2018.34.6.889

Acknowledgement

Grant : 위성자료와 역모델을 이용한 대기오염 배출자료 평가기술 개발

Supported by : 안양대학교산학협력단