DOI QR코드

DOI QR Code

Propagation Properties of a Partially Coherent Flat-Topped Vortex Hollow Beam in Turbulent Atmosphere

Liu, Dajun;Wang, Yaochuan;Wang, Guiqiu;Yin, Hongming

  • Received : 2015.11.09
  • Accepted : 2016.02.01
  • Published : 2016.02.25

Abstract

Using coherence theory, the partially coherent flat-topped vortex hollow beam is introduced. The analytical equation for propagation of a partially coherent flat-topped vortex hollow beam in turbulent atmosphere is derived, using the extended Huygens-Fresnel diffraction integral formula. The influence of coherence length, beam order N, topological charge M, and structure constant of the turbulent atmosphere on the average intensity of this beam propagating in turbulent atmosphere are analyzed using numerical examples.

Keywords

Partially coherent flat-topped vortex hollow beam;Atmospheric turbulence;Laser propagation

References

  1. F. Wang, X. Liu, and Y. Cai, “Propagation of partially coherent beam in turbulent atmosphere: A review,” Progress In Electromagnetics Research 150, 123-143 (2015). https://doi.org/10.2528/PIER15010802
  2. Y. Cai and S. He, “Propagation of various dark hollow beams in a turbulent atmosphere,” Opt. Express 14, 1353-1367 (2006). https://doi.org/10.1364/OE.14.001353
  3. H. Eyyuboğlu and Y. Baykal, “Scintillation index of flat-topped Gaussian laser beam in strongly turbulent medium,” J. Opt. Soc. Am. A 28, 1540-1544 (2011). https://doi.org/10.1364/JOSAA.28.001540
  4. G. Gbur and R. Tyson, “Vortex beam propagation through atmospheric turbulence and topological charge conservation,” J. Opt. Soc. Am. A 25, 225-230 (2008). https://doi.org/10.1364/JOSAA.25.000225
  5. O. Korotkova, J. Pu, and E. Wolf, “Spectral changes in electromagnetic stochastic beams propagating through turbulent atmosphere,” J. Mod. Opt. 55, 1199-1208 (2008). https://doi.org/10.1080/09500340701627230
  6. Y. Baykal, H. T. Eyyuboğlu, and Y. Cai, “Scintillations of partially coherent multiple Gaussian beams in turbulence,” Appl. Opt. 48, 1943-1954 (2009). https://doi.org/10.1364/AO.48.001943
  7. Y. Cui, C. Wei, Y. Zhang, F. Wang, and Y. Cai, “Effect of the atmospheric turbulence on a special correlated radially polarized beam on propagation,” Opt. Commun. 354, 353-361 (2015). https://doi.org/10.1016/j.optcom.2015.06.017
  8. H. Wang, D. Liu, Z. Zhou, S. Tong, and Y. Song, “Propagation properties of radially polarized partially coherent beam in turbulent atmosphere,” Optics and Lasers in Engineering 49, 1238-1244 (2011). https://doi.org/10.1016/j.optlaseng.2011.04.002
  9. F. Wang, S. Zhu, and Y. Cai, “Experimental study of the focusing properties of a Gaussian Schell-model vortex beam,” Opt. Lett. 36, 3281-3283 (2011). https://doi.org/10.1364/OL.36.003281
  10. G. Zhou, Y. Cai, and X. Chu, “Propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere,” Opt. Express 20, 9897-9910 (2012). https://doi.org/10.1364/OE.20.009897
  11. H. Wang and X. Qian, “Spectral properties of a random electromagnetic partially coherent flat-topped vortex beam in turbulent atmosphere,” Opt. Commun. 291, 38-47 (2013). https://doi.org/10.1016/j.optcom.2012.11.058
  12. Y. Gu, “Statistics of optical vortex wander on propagation through atmospheric turbulence,” J. Opt. Soc. Am. A 30, 708-716 (2013).
  13. G. Zhou and G. Ru, “Angular momentum density of a linearly polarized Lorentz-Gauss vortex beam,” Opt. Commun. 313, 157-169 (2014). https://doi.org/10.1016/j.optcom.2013.10.010
  14. Y. Huang, F. Wang, Z. Gao, and B. Zhang, “Propagation properties of partially coherent electromagnetic hyperbolicsine-Gaussian vortex beams through non-Kolmogorov turbulence,” Opt. Express 23, 1088-1102 (2015). https://doi.org/10.1364/OE.23.001088
  15. G. Wu, W. Dai, H. Tang, and H. Guo, “Beam wander of random electromagnetic Gaussian-schell model vortex beams propagating through a Kolmogorov turbulence,” Opt. Commun. 336, 55-58 (2015). https://doi.org/10.1016/j.optcom.2014.08.052
  16. H. Liu, Y. Lü, J. Xia, X. Pu, and L. Zhang, “Flat-topped vortex hollow beam and its propagation properties,” J. Opt. 17, 075606 (2015). https://doi.org/10.1088/2040-8978/17/7/075606
  17. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312, 263-267 (2003). https://doi.org/10.1016/S0375-9601(03)00684-4
  18. A. Jeffrey and H. Dai, Handbook of Mathematical Formulas and Integrals, 4th ed. (Academic Press Inc., 2008).
  19. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  20. G. Gbur and T. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117-125 (2003). https://doi.org/10.1016/S0030-4018(03)01606-7

Cited by

  1. Effect of optical system and turbulent atmosphere on the average intensity of partially coherent flat-topped vortex hollow beam vol.130, 2017, https://doi.org/10.1016/j.ijleo.2016.08.128
  2. Intensity properties of flat-topped vortex hollow beams propagating in atmospheric turbulence vol.127, pp.20, 2016, https://doi.org/10.1016/j.ijleo.2016.07.026
  3. The performance analysis of coherent detection based on the optical Costas loop vol.130, 2017, https://doi.org/10.1016/j.ijleo.2016.11.141
  4. Nonparaxial propagation of flat-topped vortex hollow beam in free space vol.131, 2017, https://doi.org/10.1016/j.ijleo.2016.11.076
  5. Influences of uniaxial crystal on partially coherent multi-Gaussian Schell-model vortex beams vol.55, pp.11, 2016, https://doi.org/10.1117/1.OE.55.11.116101