Phase Only Pupil Filter Design Using Zernike Polynomials

Liu, Jiang;Miao, Erlong;Sui, Yongxin;Yang, Huaijiang

  • Received : 2015.08.28
  • Accepted : 2015.12.04
  • Published : 2016.02.25


A pupil filter is a useful technique for modifying the light intensity distribution near the focus of an optical system to realize depth of field (DOF) extension and superresolution. In this paper, we proposed a new design of the phase only pupil filter by using Zernike polynomials. The effect of design parameters of the new filters on DOF extension and superresolution are discussed, such as defocus Strehl ratio (S.R.), superresolution factor (G) and relative first side lobe intensity (M). In comparison with the other two types of pupil filters, the proposed filter presents its advantages on controlling both the axial and radial light intensity distribution. Finally, defocused imaging simulations are carried out to further demonstrate the effectiveness and superiority of the proposed pupil filter on DOF extension and superresolution in an optical imaging system.


Wavefront coding;Non-integer phase mask;Depth of field;Imaging system


  1. T. Liu, J. B. Tan, and J. Liu, “Spoke wheel filtering strategy for on-axis flattop shaping,” Opt. Express 18, 2822-2835 (2010).
  2. V. F. Canales and M. P. Cagigal, “Pupil filter design by using a Bessel functions basis at the image plane,” Opt. Express 14, 10393-10402 (2006).
  3. N. A. Ochoa, J. Garcia-Marquez, and A. Gonzales-Vega, “Hybrid pupilfilter design using Bessel series,” Opt. Commun. 284, 4900-4902 (2011).
  4. S. Ledesma, J. Campos, and J. C. Escalera, “Simple expressions for performance parameters of complex filters with applications to super Gaussian phase filters,” Opt. Lett. 29, 932-934 (2004).
  5. M. Born and E. Wolf, Principles of Optics, 5th ed. (Cambridge University Press, UK, 1999), pp. 484-492.
  6. D. Malacara, Optical Shop Testing, 3rd ed. (A John Wiley & Sons, Inc. Publication, USA, 2006), pp. 498-544.
  7. R. Juškaitis, E. J. Botcherby, and T. Wilson, "Scanning microscopy with extended depth of focus," Proc. SPIE 5701, 85-92 (2005).
  8. D. M. de Juana, J. E. Otti, V. F. Canales, and M. P. Cagigal, “Tranverse or axial superresolution in a 4Pi confocal microscope by phase only filters,” J. Opt. Soc. Am. A 20, 2172-2178 (2003).
  9. G. T. di Francia, “Super gain antennas and optical resolving power,” Atti Fond. Giorgio Rochi 7, 366-372 (1952).
  10. T. R. Sales and G. M. Morris, "Diffractive superresolution elements," J. Opt. Soc. Am. A 14, 1637 (1997).
  11. R. M. Sales and G. Michael, “Axial superresolution with phase-only pupil filters,” Opt. Commun. 156, 227-239 (1998).
  12. J. R. Sheppard, J. Campos, J. C. Escalera, and S. Ledesma, “Two-zone pupil filter,” Opt. Commun. 281, 913-922 (2008).
  13. X. J. Yu, X. Y. Liu, J. Gu, D. Y. Cui, J. Y. Wu, and L. B. Liu, “Depth extension and sidelobe suppression in optical coherence tomography using pupil filters,” Opt. Express 22, 26956-26966 (2014).
  14. J. R. Sheppard, J. Campos, J. C. Escalera, and S. Ledesma, “Three-zone pupil filter,” Opt. Commun. 281, 3623-3630 (2008).
  15. E. Ben-Eliezer, N. Konforti, B. Milgrom, and E. Marom, “An optimal binary amplitude-phase mask for hybrid imaging systems that exhibit high resolution and extend depth of field,” Opt. Express 16, 20540-20561 (2008).
  16. J. R. Sheppard, “Pupil filters for generation of light sheets,” Opt. Express 21, 6339-6345 (2013).
  17. H. Fukuda and R. Yamanaka, “A new pupil filter for annular illumination in optical lighography,” Jpn. J. Appl. Phys. 31, 4126-4130 (1992).
  18. X. Zhao, C. Li, and H. Ruan, "New approach for improving transverse superresolution in optical data storage," Opt. Eng. 44, 125202 (2005).