DOI QR코드

DOI QR Code

Three Degrees of Freedom Global Calibration Method for Measurement Systems with Binocular Vision

Xu, Guan;Zhang, Xinyuan;Li, Xiaotao;Su, Jian;Lu, Xue;Liu, Huanping;Hao, Zhaobing

  • Received : 2015.08.12
  • Accepted : 2015.12.16
  • Published : 2016.02.25

Abstract

We develop a new method to globally calibrate the feature points that are derived from the binocular systems at different positions. A three-DOF (degree of freedom) global calibration system is established to move and rotate the 3D calibration board to an arbitrary position. A three-DOF global calibration model is constructed for the binocular systems at different positions. The three-DOF calibration model unifies the 3D coordinates of the feature points from different binocular systems into a unique world coordinate system that is determined by the initial position of the calibration board. Experiments are conducted on the binocular systems at the coaxial and diagonal positions. The experimental root-mean-square errors between the true and reconstructed 3D coordinates of the feature points are 0.573 mm, 0.520 mm and 0.528 mm at the coaxial positions. The experimental root-mean-square errors between the true and reconstructed 3D coordinates of the feature points are 0.495 mm, 0.556 mm and 0.627 mm at the diagonal positions. This method provides a global and accurate calibration to unity the measurement points of different binocular vision systems into the same world coordinate system.

Keywords

Three-DOF;Global calibration;Binocular vision

References

  1. Z. H. Zhang, H. Y. Ma, T. Guo, S. X. Zhang, and J. P. Chen, “Flexible calibration of phase calculation-based three-dimensional imaging system,” Opt. Lett. 36, 1257-1259 (2011). https://doi.org/10.1364/OL.36.001257
  2. B. Pan, D. F. Wu, and L. P. Yu, “Optimization of a three-dimensional digital image correlation system for deformation measurements in extreme environments,” Appl. Opt. 51, 4409-4419 (2012). https://doi.org/10.1364/AO.51.004409
  3. G. Xu, L. Sun, X. Li, J. Su, Z. Hao, and X. Lu, “Global calibration and equation reconstruction methods of a three dimensional curve generated from a laser plane in vision measurement,” Opt. Express 22, 22043-22055 (2014). https://doi.org/10.1364/OE.22.022043
  4. Y. H. Lin and J. L. Wu, “Quality assessment of stereoscopic 3D image compression by binocular integration behaviors,” IEEE T. Image Process 23, 1527-1542 (2014). https://doi.org/10.1109/TIP.2014.2302686
  5. X. A. Peng, X. L. Liu, Y. K. Yin, and A. Li, “Optical measurement network for large-scale and shell-like objects,” Opt. Lett. 36, 157-159 (2011). https://doi.org/10.1364/OL.36.000157
  6. E. Peng and L. Li, “Camera calibration using one-dimensional information and its applications in both controlled and uncontrolled environments,” Pattern Recogn. 43, 1188-1198 (2010). https://doi.org/10.1016/j.patcog.2009.08.003
  7. J. H. Sun, Q. Z. Liu, Z. Liu, and G. J. Zhang, “A calibration method for stereo vision sensor with large FOV based on 1D targets,” Opt. Laser. Eng. 49, 1245-1250 (2011). https://doi.org/10.1016/j.optlaseng.2011.06.011
  8. M. Xie, Z. Z. Wei, G. J. Zhang, and X. G. Wei, “A flexible technique for calibrating relative position and orientation of two cameras with no-overlapping FOV,” Measurement 46, 34-44 (2013). https://doi.org/10.1016/j.measurement.2012.10.005
  9. L. Fauch, E. Nippolainen, V. Teplov, and A. A. Kamshilin, “Recovery of reflection spectra in a multispectral imaging system with light emitting diodes,” Opt. Express 18, 23394-23405 (2010). https://doi.org/10.1364/OE.18.023394
  10. D. Samper, J. Santolaria, F. J. Brosed, A. C. Majarena, and J. J. Aguilar, “Analysis of Tsai calibration method using two-and three-dimensional calibration objects,” Mach. Vision Appl. 24, 117-131 (2013). https://doi.org/10.1007/s00138-011-0398-9
  11. Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE T. Pattern Anal. 22, 1330-1334 (2000). https://doi.org/10.1109/34.888718
  12. M. A. Sutton, J. H. Yan, V. Tiwari, H. W. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Laser. Eng. 46, 746-757 (2008). https://doi.org/10.1016/j.optlaseng.2008.05.005
  13. M. Vo, Z. Y. Wang, L. Luu, and J. Ma, "Advanced geometric camera calibration for machine vision," Opt. Eng. 50, 110503 (2011). https://doi.org/10.1117/1.3647521
  14. K. Irsch, B. I. Gramatikov, Y. K. Wu, and D. L. Guyton, “New pediatric vision screener employing polarization-modulated, retinal-birefringence-scanning-based strabismus detection and bull’s eye focus detection with an improved target system: opto-mechanical design and operation,” J. Biomed. Opt. 19, 067004 (2014). https://doi.org/10.1117/1.JBO.19.6.067004
  15. P. Zhao and N. H. Wang, “Precise perimeter measurement for 3D object with a binocular stereo vision measurement system,” Optik 121, 953-957 (2010). https://doi.org/10.1016/j.ijleo.2008.12.008
  16. P. Zhao and G. Q. Ni, “Simultaneous perimeter measurement for 3D object with a binocular stereo vision measurement system,” Opt. Laser. Eng. 48, 505-511 (2010). https://doi.org/10.1016/j.optlaseng.2009.08.007
  17. W. M. Li and Y. Li, “Portable monocular light pen vision measurement system,” J. Opt. Soc. Am. A 32, 238-247 (2015). https://doi.org/10.1364/JOSAA.32.000238
  18. Y. Sando, D. Barada, and T. Yatagai, “Holographic 3D display observable for multiple simultaneous viewers from all horizontal directions by using a time division method,” Opt. Lett. 39, 5555-5557 (2014). https://doi.org/10.1364/OL.39.005555
  19. S. Y. Hwang and J. B. Song, “Monocular vision-based SLAM in indoor environment using corner, lamp, and door features from upward-looking camera,” IEEE T. Ind. Electron. 58, 4804-4812 (2011). https://doi.org/10.1109/TIE.2011.2109333
  20. Z. Y. Zhang and L. Yuan, “Building a 3D scanner system based on monocular vision,” Appl. Opt. 51, 1638-1644 (2012). https://doi.org/10.1364/AO.51.001638
  21. K. Sakai, M. Ogiya, and Y. Hirai, “Decoding of depth and motion in ambiguous binocular perception,” J. Opt. Soc. Am. A 28, 1445-1452 (2011). https://doi.org/10.1364/JOSAA.28.001445
  22. G. D. Love, D. M. Hoffman, P. J. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17, 15716-15725 (2009). https://doi.org/10.1364/OE.17.015716
  23. J. M. Ryu, J. H. Oh, and J. H. Jo, “Unified analytic calculation method for zoom loci of zoom lens systems with a finite object distance,” J. Opt. Soc. Korea 18, 134-145 (2014). https://doi.org/10.3807/JOSK.2014.18.2.134
  24. S. Di, H. Lin, and R. X. Du, “Two-dimensional (2D) displacement measurement of moving objects using a new MEMS binocular vision system,” J. Mod. Opt. 58, 694-699 (2011). https://doi.org/10.1080/09500340.2011.566636
  25. X. J. Zou, H. X. Zou, and J. Lu, “Virtual manipulator-based binocular stereo vision positioning system and errors modelling,” Mach. Vision Appl. 23, 43-63 (2012). https://doi.org/10.1007/s00138-010-0291-y
  26. X. L. Wang, “Novel calibration method for the multi-camera measurement system,” J. Opt. Soc. Korea 18, 746-752 (2014). https://doi.org/10.3807/JOSK.2014.18.6.746
  27. J. W. Kim, J. M. Ryu, J. H. Jo, and Y. J. Kim, “Evaluation of a corrected cam for an interchangeable lens with a distance window,” J. Opt. Soc. Korea 18, 23-31 (2014). https://doi.org/10.3807/JOSK.2014.18.1.023
  28. G. Aragon-Camarasa, H. Fattah, and J. P. Siebert, “Towards a unified visual framework in a binocular active robot vision system,” Robot. Auton. Syst. 58, 276-286 (2010). https://doi.org/10.1016/j.robot.2009.08.005
  29. C. Hyun, S. Kim, and H. Pahk, “Methods to measure the critical dimension of the bottoms of through-silicon vias using white-light scanning interferometry,” J. Opt. Soc. Korea 18, 531-537 (2014). https://doi.org/10.3807/JOSK.2014.18.5.531
  30. Y. Cui, F. Q. Zhou, Y. X. Wang, L. Liu, and H. Gao, “Precise calibration of binocular vision system used for vision measurement,” Opt. Express 22, 9134-9149 (2014). https://doi.org/10.1364/OE.22.009134
  31. G. Xu, X. T. Li, J. Su, H. D. Pan, and G. D. Tian, “Precision evaluation of three-dimensional feature points measurement by binocular vision,” J. Opt. Soc. Korea 15, 30-37 (2011). https://doi.org/10.3807/JOSK.2011.15.1.030
  32. C. Schwarz, P. M. Prieto, E. J. Fernández, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Opt. Lett. 36, 4779-4781 (2011). https://doi.org/10.1364/OL.36.004779
  33. M. Cho and D. Shin, “Depth resolution analysis of axially distributed stereo camera systems under fixed constrained resources,” J. Opt. Soc. Korea 17, 500-505 (2013). https://doi.org/10.3807/JOSK.2013.17.6.500
  34. J. Wang, X. J. Wang, F. Liu, Y. Gong, H. H. Wang, and Z. Qin, “Modeling of binocular stereo vision for remote coordinate measurement and fast calibration,” Opt. Laser. Eng. 54, 269-274 (2014). https://doi.org/10.1016/j.optlaseng.2013.07.021

Cited by

  1. Global vision measurements of object position and orientation with non-coplanar feature points determined by point optimization in camera coordinate system vol.56, pp.1, 2017, https://doi.org/10.1364/AO.56.000105
  2. A method to calibrate a camera using perpendicularity of 2D lines in the target observations vol.6, pp.1, 2016, https://doi.org/10.1038/srep34951
  3. Optimization reconstruction of projective point of laser line coordinated by orthogonal reference vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-15399-1
  4. 3-D Reconstruction of Binocular Vision Using Distance Objective Generated From Two Pairs of Skew Projection Lines vol.5, 2017, https://doi.org/10.1109/ACCESS.2017.2777818
  5. Four points: one-pass geometrical camera calibration algorithm pp.1432-2315, 2019, https://doi.org/10.1007/s00371-019-01632-7