DOI QR코드

DOI QR Code

Vector Passive Harmonic Mode-locking Fiber Laser Based on Topological Insulator Bi2Se3 Interacting with Fiber Taper

Li, Jian Ping

  • Received : 2015.08.18
  • Accepted : 2015.12.05
  • Published : 2016.02.25

Abstract

I propose a vector passive harmonic mode-locked fiber laser based on topological insulator Bi2Se3 interacting with a fiber taper with a diameter of 7 μm. The particles of topological insulator are deposited uniformly onto the fiber taper with light pressure effect. By incorporating the fabricated saturable absorber into an Er-doped fiber laser cavity, stable mode-locked fiber is obtained. Due to the intense evanescent field of the fiber taper, strong confinement of light enhances the nonlinearity of the laser cavity, and passive harmonic mode-locking is performed. I observe a maximum harmonic mode-locking of 356th, corresponding to a frequency of 3.57 GHz. The pulse duration is 824 fs, and the full width at half maximum of the spectrum is about 8.2 nm. The polarization dependent loss of the saturable absorber is ~ 2.5 dB in the wavelength range of the C band. As the cavity contains no other polarization dependent device, the mode-locked laser is functioning in the vector state. The harmonic order vs pump power is investigated. To the best of our knowledge, this report is the highest frequency mode-locked fiber laser based on Bi2Se3. Experimental results indicate that the topological insulator Bi2Se3 functioning with a thin fiber taper is effective for vector harmonic mode-locking.

Keywords

Passively mode-locked laser;Topological insulator;Bi2Se3;Harmonic mode-locking

References

  1. J. Sotor, G. Sobon, K. Krzempek, and K. M. Abramski, “Fundamental and harmonic mode-locking in erbium-doped fiber laser based on grapheme saturable absorber,” Opt. Commun. 285, 3174-3178 (2012). https://doi.org/10.1016/j.optcom.2012.03.002
  2. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, "Graphene mode-lockers for fiber lasers functioned with evanescent field interaction," Appl. Phys. Lett. 96, 051122 (2010). https://doi.org/10.1063/1.3309669
  3. F. Bonaccorso and Z. Sun, “Solution processing of graphene, topological insulators and other 2d crystals for ultrafast photonics,” Opt. Mater. Express 4, 63-78 (2013).
  4. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, "Ultra-short pulse generation by a topological insulator based saturable absorber," Appl. Phys. Lett. 101, 211106 (2012). https://doi.org/10.1063/1.4767919
  5. Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212-5215 (2013). https://doi.org/10.1364/OL.38.005212
  6. C. S. Jun, S. Y. Choi, F. Rotermund, B. Y. Kim, and D. Yeom, “Toward higher-order passive harmonic mode-locking of a soliton fiber laser,” Opt. Lett. 37, 1862-1864 (2012). https://doi.org/10.1364/OL.37.001862
  7. G. Sobon, J. Sotor, and K. M. Abramski, "Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz," Appl. Phys. Lett. 100, 161109 (2012). https://doi.org/10.1063/1.4704913
  8. C. S. Jun, J. H. Im, S. H. Yoo, S. Y. Choi, F. Rotermund, D. Yeom, and B. Y. Kim, “Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes,” Opt. Express 19, 19775-19780 (2011). https://doi.org/10.1364/OE.19.019775
  9. E. Yoshida and M. Nakazawa, “Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser,” Opt. Lett. 22, 1409-1411 (1997). https://doi.org/10.1364/OL.22.001409
  10. S. Zhang, F. Lu, X. Dong, P. Shum, X. Yang, X. Zhou, Y. Gong, and C. Lu, “Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser,” Opt. Lett. 30, 2852-2854 (2005). https://doi.org/10.1364/OL.30.002852
  11. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, "Demonstration of a stable ultrafast laser based on a nonlinear microcavity," Nature Commun. 3, 765, doi: 10.1038/ncomms1762 (2012). https://doi.org/10.1038/ncomms1762
  12. P. F. Zhu, Z. B. Lin, Q. Y. Ning, Z. R. Cai, X. B. Xing, J. Liu, W. C. Chen, Z. C. Luo, A. P. Luo, and W. C. Xu, "Passive harmonic mode-locking in a fiber laser by using a microfiber-based graphene saturable absorber," Laser. Phys. Lett. 10, 105107 (2013). https://doi.org/10.1088/1612-2011/10/10/105107
  13. Z. Zhang, L. Wang, and Y. Wang, “Sub-100 fs and passive harmonic mode-locking of dispersion-managed dissipative fiber laser with carbon nanotubes,” IEEE J. Lightwave Technol. 31, 3719-3725 (2013). https://doi.org/10.1109/JLT.2013.2287632
  14. A. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14, 144-154 (1997). https://doi.org/10.1364/JOSAB.14.000144
  15. G. Sobon, K. Krzempek, P. Kaczmarek, K. M. Abramski, and M. Nikodem, “10 GHz passive harmonic mode-locking in Er-Yb double-clad fiber laser,” Opt. Commun. 284, 4203-4206 (2011). https://doi.org/10.1016/j.optcom.2011.04.050
  16. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077-3083 (2009). https://doi.org/10.1002/adfm.200901007
  17. M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nature Photon. 7, 868-874 (2013). https://doi.org/10.1038/nphoton.2013.280
  18. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Gaphene photonics and optoelectronics,” Nature Photon. 4, 611-622 (2010). https://doi.org/10.1038/nphoton.2010.186
  19. L. Gao, W. Huang, J. D. Zhang, T. Zhu, H. Zhang, C. J. Zhao, W. Zhang, and H. Zhang, “Q-switched mode-locked erbium-doped fiber laser based on topological insulator Bi2Se3 deposited fiber taper,” Appl. Opt. 53, 5117-5122 (2014). https://doi.org/10.1364/AO.53.005117
  20. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode locking in Er doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mat. Express 4, 1-6 (2014).
  21. J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode‐locking of a fiber laser based on a bulk-structured Bi2Te3 topological insulator,” Opt. Express 23, 6359-6369 (2015). https://doi.org/10.1364/OE.23.006359
  22. C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20, 27888-27895 (2012). https://doi.org/10.1364/OE.20.027888
  23. Z. Luo, C. Liu, Y. Hang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 μm wavelength,” IEEE J. Select. Topics Quantum Electron. 20, 0902708 (2014).
  24. J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Se3 topological insulator,” Opt. Express 22, 6165-6173 (2014). https://doi.org/10.1364/OE.22.006165
  25. L. Gao, T. Zhu, W. Huang, and Z. Luo, "Stable, ultrafast pulse mode-locked by topological insulator Bi2Se3 nanosheets interacting with photonic crystal fiber: from anomalous dispersion to normal dispersion," IEEE Photon. J. 7, 3300108 (2015).
  26. Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, "Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser," IEEE J. Select. Topics Quantum Electron. 20, 0900508 (2014).

Cited by

  1. The Property, Preparation and Application of Topological Insulators: A Review vol.10, pp.7, 2017, https://doi.org/10.3390/ma10070814
  2. Observation of stable bound soliton with dual-wavelength in a passively mode-locked Er-doped fiber laser vol.26, pp.7, 2017, https://doi.org/10.1088/1674-1056/26/7/074212