Label-Free Real-Time Monitoring of Reactions Between Internalin A and Its Antibody by an Oblique-Incidence Reflectivity-Difference Method

Wang, Xu;Malovichko, Galina;Mendonça, Marcelo;Conceição, Fabricio Rochedo;Aleixo, José AG;Zhu, Xiangdong

  • Received : 2015.08.24
  • Accepted : 2015.12.14
  • Published : 2016.02.25


Surface protein internalin (InlA) is a major virulence factor of the food-borne pathogen L. monocytogenes. It plays an important role in bacteria crossing the host's barrier by specific interaction with the cell adhesion molecule E-cadherin. Study of this protein will help to find better ways to prevent listeriosis. In this study, a monoclonal antibody against InlA was used to detect InlA. The reaction was label-free and monitored in real time with an oblique-incidence reflectivity-difference (OI-RD) technique. The kinetic constants kon and koff and the equilibrium dissociation constant Kd for this reaction were also obtained. These parameters indicate that the antibody is capable of detecting InlA. Additionally, the results also demonstrate the feasibility of using OI-RD for proteomics research and bacteria detection.


Label-free;Reflectivity difference;Internalin


  1. A. K. Bhunia, P. H. Ball, A. T. Fuad, B. W. Kurz, J. W. Emerson, and M. G. Johnson, “Development and characterization of a monoclonal antibody specific for Listeria monocytogenes and Listeria innocua,” Infect. Immun. 59, 3176-3184 (1991).
  2. J. Mengaud, H. Ohayon, P. Gounon, R. Mege, and P. Cossart, “E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells,” Cell 84, 923-932 (1996).
  3. C. D’Souza-Schorey, “Disassembling adherens junctions: breaking up is hard to do,” Trends Cell Biol. 15, 19-26 (2005).
  4. A. K. Bhunia and M. G. Johnson, “Monoclonal antibody specific for Listeria monocytogenes associated with a 66-kilodalton cell surface antigen,” Appl. Environ. Microbiol. 58, 1924-1929 (1992).
  5. S. H. Kim, M. K. Park, J. Y. Kim, P. D. Chuong, Y. S. Lee, B. S. Yoon, K. K. Hwang, and Y. K. Lim, “Development of a sandwich ELISA for the detection of Listeria spp. using specific flagella antibodies,” J. Vet. Sci. 6, 41-46 (2005).
  6. S. A. Heo, R. Nannapaneni, R. P. Story, and M. G. Johnson, “Characterization of new hybridoma clones producing monoclonal antibodies reactive against both live and heat-killed Listeria monocytogenes,” J. Food Sci. 72, M008-M015 (2007).
  7. M. Lin, S. Armstrong, J. Ronholm, H. Dan, M. E. Auclair, Z. Zhang, and X. Cao, “Screening and characterization of monoclonal antibodies to the surface antigens of Listeria monocytogenes serotype 4b,” J. Appl. Microbiol. 106, 1705-1714 (2009).
  8. B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays,” Anal. Chem. 73, 1-7 (2001).
  9. M. Mendonça, N. L. Conrad, F. R. Conceição, A. N. Moreira, W. P. Silva, J. A. Aleixo, and A. K. Bhunia, "Highly specific fiber optic immunosensor coupled with immunomagnetic separation for detection of low levels of Listeria monocytogenes and L. ivanovii," BMC Microbiol. 12, 275 (2012).
  10. H. Joung, W. Shim, D. Chung, J. Ahn, B. H. Chung, H. Choi, S. Ha, K. Kim, K. Lee, C. Kim, K. Kim, and M. Kim, “Screening of a specific monoclonal antibody against and detection of Listeria monocytogenes whole cells using a surface plasmon resonance biosensor,” Biotechnol. Bioprocess Eng. 12, 80-85 (2007).
  11. K. M. Byun, “Development of nanostructured plasmonic substrates for enhanced optical biosensing,” J. Opt. Soc. Korea 14, 65-76 (2010).
  12. F. Yu, D. Yao, and W. Knoll, “Surface plasmon field-enhanced fluorescence spectroscopy studies of the interaction between an antibody and its surface-coupled antigen,” Anal. Chem. 75, 2610-2617 (2003).
  13. J. P. Landry, Y. Y. Fei, and X. D. Zhu, “Simultaneous measurement of 10,000 protein-ligand affinity constants using microarray-based kinetic constant assays,” Assay Drug Dev. Technol. 10, 250-259 (2012).
  14. J. P. Landry, Y. Y. Fei, and X. D. Zhu, “High throughput, label-free screening small molecule compound libraries for protein-ligands using combination of small molecule microarrays and a special ellipsometry-based optical scanner,” Int. Drug Discov. 6, 8-13 (2012).
  15. R. Sandipan, M. Gunjan, and S. Sanjeeva, “Label-free detection techniques for protein microarrays: Prospects, merits and challenges,” Proteomics 10, 731-748 (2010).
  16. X. D. Zhu, "Oblique-incidence optical reflectivity difference from a rough film of crystalline material," Phys. Rev. B 69, 115407 (2004).
  17. B. A. Rozenberg, “Kinetics, thermodynamics and mechanism of reactions of epoxy oligomers with amines,” Epoxy Resins and Composites II Advances in Polymer Sciences 75, 113-165 (1986).
  18. J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface,” Biopolymers 17, 1759-1772 (1978).
  19. I. Langmuir, “The constitution and fundamental properties of solids and liquids,” J. Am. Chem. Soc. 38, 2221-2295 (1916).
  20. K. House-Pompeo, J. O. Boles, and M. Höök, “Characterization of bacterial adhesin interactions with extracellular matrix components utilizing biosensor technology,” METHODS: A Companion to Meth. Enz. 6, 134-142 (1994).
  21. M. J. Pazos, A. Alfonso, M. R. Vieytes, T. Yasumoto, J. M. Vieites, and L. M. Botana, “Resonant mirror biosensor detection method based on yessotoxin-phosphodiesterase interactions,” Anal. Biochem. 335, 112-118 (2004).