DOI QR코드

DOI QR Code

Role of Arbitrary Intensity Profile Laser Beam in Trapping of RBC for Phase-imaging

Kumar, Ranjeet;Srivastava, Vishal;Mehta, Dalip Singh;Shakher, Chandra

  • Received : 2015.11.03
  • Accepted : 2015.12.28
  • Published : 2016.02.25

Abstract

Red blood cells (RBCs) are customarily adhered to a bio-functionalised substrate to make them stationary in interferometric phase-imaging modalities. This can make them susceptible to receive alterations in innate morphology due to their own weight. Optical tweezers (OTs) often driven by Gaussian profile of a laser beam is an alternative modality to overcome contact-induced perturbation but at the same time a steeply focused laser beam might cause photo-damage. In order to address both the photo-damage and substrate adherence induced perturbations, we were motivated to stabilize the RBC in OTs by utilizing a laser beam of ‘arbitrary intensity profile’ generated by a source having cavity imperfections per se. Thus the immobilized RBC was investigated for phase-imaging with sinusoidal interferograms generated by a compact and robust Michelson interferometer which was designed from a cubic beam splitter having one surface coated with reflective material and another adjacent coplanar surface aligned against a mirror. Reflected interferograms from bilayers membrane of a trapped RBC were recorded and analyzed. Our phase-imaging set-up is limited to work in reflection configuration only because of the availability of an upright microscope. Due to RBC’s membrane being poorly reflective for visible wavelengths, quantitative information in the signal is weak and therefore, the quality of experimental results is limited in comparison to results obtained in transmission mode by various holographic techniques reported elsewhere.

Keywords

Laser resonators;Miniaturized Michelson interferometer;Optical tweezers;Human RBC;Interferometric phase-imaging

References

  1. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6694-7001 (1999).
  2. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter optimized digital holographic microscope for high-resolution living cell analysis,” Appl. Opt. 43, 6536-6544 (2004). https://doi.org/10.1364/AO.43.006536
  3. C. J. Carl, L. F. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693-8698 (2005). https://doi.org/10.1364/OPEX.13.008693
  4. B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic–phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014:1-4 (2011).
  5. P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a non-invasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005). https://doi.org/10.1364/OL.30.000468
  6. A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617-23622 (2012). https://doi.org/10.1364/OE.20.023617
  7. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503-2505 (2004). https://doi.org/10.1364/OL.29.002503
  8. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 10, 1165-1167 (2005).
  9. S. K. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of interaction of RBC with optical tweezers,” Opt. Express 13, 4745-4751 (2005). https://doi.org/10.1364/OPEX.13.004745
  10. A. Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma, and D. Mathur, “Euler buckling-induced folding and rotation of red blood cells in an optical trap,” Phys. Biol. 3, 67-73 (2006). https://doi.org/10.1088/1478-3975/3/1/007
  11. J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85, 6048-6051 (2004). https://doi.org/10.1063/1.1836874
  12. S. C. Gifford, J. Derganc, S. S. Shevkoplyas, T. Yoshida, and M. W. Bitensky, “A detailed study of time-dependent changes in human red blood cells: from reticulocyte maturation to erythrocyte senescence,” British Journal of Heamatology 135, 395-404 (2006). https://doi.org/10.1111/j.1365-2141.2006.06279.x
  13. E. Y. Parshina, A. S. Sarycheva, A. I. Yusipovich, N. A. Brazhe, E. A. Goodilin, and G. V. Maksimov, “Combined Raman and atomic force microscopy study of hemoglobin distribution inside erythrocytes and nanoparticle localization on the erythrocyte surface,” Laser Phys. Lett. 10, 075607 (2013). https://doi.org/10.1088/1612-2011/10/7/075607
  14. M. Friebel and M. Meinke, “Determination of the complex refractive index of highly concentrated haemoglobin solutions using transmittance and reflectance measurements,” J. Biomed. Opt. 10, 064019 (2005). https://doi.org/10.1117/1.2138027
  15. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill Professional, 2011).
  16. K. K. Williams, Hematology (McGraw-Hill Medical, New York, USA, 2010).
  17. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170-4191 (2013). https://doi.org/10.3390/s130404170
  18. Y. L. Wang and D. E. Discher, Methods in Cell Biology - Cell Mechanics (Elsevier Press, 2008), vol. 83.
  19. S. Suresh, “Mechanical response of human red blood cells in health and disease: some structure-property-function relationships,” J. Mater. Res. 21, 1871-1877 (2006). https://doi.org/10.1557/jmr.2006.0260
  20. Y. K. Park, M. D. Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. National Academy of Sciences 105, 13730-13735 (2008). https://doi.org/10.1073/pnas.0806100105
  21. H. S. Byun, T. R. Hillman, J. M. Higgins, M. D. Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. K. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomaterialia 8, 4130-4138 (2012). https://doi.org/10.1016/j.actbio.2012.07.011
  22. A. Rohrbach and E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494-2507 (2002). https://doi.org/10.1364/AO.41.002494
  23. P. C. Ke and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159-2168 (1998). https://doi.org/10.1080/09500349808231752
  24. R. W. Going, B. L. Conover, and M. J. Escuti, "Electrostatic force and torque description of generalized spheroidal particles in optical landscapes," Proc. SPIE 7038, 703826 (2008).
  25. D. Bonessi, K. Bonin, and T. Walker, “Optical forces on particles of arbitrary shape and size,” J. Opt. A: Pure Appl. Opt. 9, S228-S234 (2007). https://doi.org/10.1088/1464-4258/9/8/S16
  26. F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613:1-14 (2007).
  27. F. Xu, K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz-Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119-131 (2007). https://doi.org/10.1364/JOSAA.24.000119
  28. Y. S. Bae, J. I. Song, D. Har, and D. Y. Kim, “Beam propagation analysis on thickness measurements in quantitative phase microscopy,” Opt. Rev. 22, 532-538 (2015). https://doi.org/10.1007/s10043-015-0112-7
  29. X. Wang, X.-B. Wang, and P. R. C. Gascoyne, “General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method,” Journal of Electrostatics 39, 277-295 (1997). https://doi.org/10.1016/S0304-3886(97)00126-5
  30. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594-4602 (1989). https://doi.org/10.1063/1.343813
  31. W. L. Collett, C. A. Ventrice, and S. M. Mahajan, “Electromagnetic wave technique to determine radiation torque on micromachines driven by light,” Appl. Phys. Lett. 82, 2730-2732 (2003). https://doi.org/10.1063/1.1567042
  32. R. Paul and K. V. I. S. Kaler, “Effects of particle shape on electromagnetic torques: A comparison of the effective-dipolemoment method with the Maxwell-stress-tensor method,” Phys. Rev. E 48, 1491-1496 (1993). https://doi.org/10.1103/PhysRevE.48.1491
  33. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427-1443 (1988). https://doi.org/10.1364/JOSAA.5.001427
  34. H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169-179 (1998). https://doi.org/10.1016/S0030-4018(98)00220-X
  35. J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration,” Appl. Opt. 43, 2532-2544 (2004). https://doi.org/10.1364/AO.43.002532
  36. J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force,” Appl. Opt. 43, 2545-2554 (2004). https://doi.org/10.1364/AO.43.002545
  37. J. A. Dharmadhikari and D. Mathur, “Using an optical trap to fold and align single red blood cells,” Current Science 86, 1432-1437 (2004).
  38. W. Flugge, Handbook of Engineering Mechanics (McGraw-Hill, New York, USA, 1962).
  39. J. W. Hutchinson, “Imperfection sensitivity of externally pressurized spherical shells,” J. Appl. Mech. 8, 49-55 (1967).
  40. S. Timoshenko and J. M. Gere, Theory of Elastic Stability, 2nd ed. (McGraw-Hill, New York, USA, 1961).
  41. G. Rusciano, “Experimental analysis of Hb oxy-deoxy transition in single optically stretched red blood cells,” Physica Medica 26, 233-239 (2010). https://doi.org/10.1016/j.ejmp.2010.02.001
  42. R. M. Hochmuth, “Properties of red blood cells,” in Handbook of Bioengineering, R. Skalak and S. Chien eds. (McGraw-Hill, New York, USA, 1987).
  43. J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study,” Biophys. J. 77, 3085-3095 (1999). https://doi.org/10.1016/S0006-3495(99)77139-0
  44. C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, “Large deformation of living cells using laser traps,” Acta Material 52, 1837-1845 (2004). https://doi.org/10.1016/j.actamat.2003.12.028
  45. N. Neve, S. S. Kohles, S. R. Winn, and D. C. Tretheway, “Manipulation of suspended single cells by microfluidics and optical tweezers,” Cellular and Molecular Bioengineering 3, 213-228 (2010). https://doi.org/10.1007/s12195-010-0113-3
  46. M. Khan, H. Soni, and A. K. Sood, "Optical tweezer for probing erythrocyte membrane deformability," Appl. Phys. Lett. 95, 233703 (2009). https://doi.org/10.1063/1.3272269
  47. J. Jang, C. Y. Bae, J.-K. Park, and J. C. Ye, "Self-reference quantitative phase microscopy for microfluidic devices," Opt. Lett. 35, 514 (2010). https://doi.org/10.1364/OL.35.000514
  48. N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016-2018 (2012). https://doi.org/10.1364/OL.37.002016
  49. N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15 030503 (2010). https://doi.org/10.1117/1.3420179
  50. P. Memmolo, L. Miccio, F. Merola, O. Gennari, P. A. Netti, and P. Ferraro, “3D morphometry of red blood cells by digital holography,” Cytometry Part A 85, 1030-1036 (2014). https://doi.org/10.1002/cyto.a.22570
  51. S. Ruschin, E. Yaakobi, and E. Shekel, “Gaussian content as a laser beam quality parameter,” Appl. Opt. 50, 4376-4381 (2011). https://doi.org/10.1364/AO.50.004376
  52. R. Kumar, C. Shakher, and D. S. Mehta, “Compact interferometric optical tweezers for patterned trapping and manipulation of polystyrene spheres and SWCNTs,” J. Mod. Opt. 57, 1157-1162 (2010). https://doi.org/10.1080/09500340.2010.500104
  53. http://us.mt.com/us/en/home/supportive_content/application_editorials.Sodium_Chloride_re_e.twoColEd.ht
  54. S. K. Mohanty and P. K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett. 26, 971-974 (2004). https://doi.org/10.1023/B:BILE.0000030041.94322.71
  55. S. C. Grover, R. C. Gauthier, and A. G. Skirtach, “Analysis of the behaviour of erythrocytes in an optical trapping system,” Opt. Express 7, 533-539 (2000). https://doi.org/10.1364/OE.7.000533
  56. M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51, 2259-2280 (2003). https://doi.org/10.1016/j.jmps.2003.09.019
  57. T. Colomb, S. Krivec, H. Hutter, A. A. Akatay, N. Pavillon, F. Montfort, E. Cuche, J. Kühn, C. Depeursinge, and Y. Emery, “Digital holographic reflectometry,” Opt. Express 18, 3719-3731 (2010). https://doi.org/10.1364/OE.18.003719
  58. F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab on a Chip 13, 4512-4516 (2013). https://doi.org/10.1039/c3lc50515d
  59. M. D. Panah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” J. Display Technol. 6, 490-499 (2010). https://doi.org/10.1109/JDT.2010.2043499
  60. A. R. Moradi, M. K. Ali, M. D. Panah, A. Anand, and B. Javidi, “Detection of calcium induced morphological changes of living cells using optical traps,” IEEE Photon. J. 2, 775-783 (2010). https://doi.org/10.1109/JPHOT.2010.2068283
  61. M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked, “Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers,” Opt. Lett. 40, 1881-1884 (2015). https://doi.org/10.1364/OL.40.001881
  62. N. Cardenas and S. K. Mohanty, “Decoupling of geometric thickness and refractive index in quantitative phase microscopy,” Opt. Lett. 38, 1007-1009 (2013). https://doi.org/10.1364/OL.38.001007
  63. Y. Kim, H. Shim, K. Kim, H. J. Park, S. Jang, and Y. K. Park, "Profiling individual human red blood cells using common-path diffraction optical tomography," Scientific Reports 4, 6659 (2014). https://doi.org/10.1038/srep06659
  64. K. H. Kim, J. G. Yoon, and Y. K. Park, “Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography,” Optica 2, 343-346 (2015). https://doi.org/10.1364/OPTICA.2.000343
  65. B. Kemper, P. Langehanenberg, A. Höink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Käs, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J. Biophoton. 3, 425-431 (2010). https://doi.org/10.1002/jbio.201000035
  66. B. Kemper, I. Bredebusch, W. Domschke, S. Kosmeier, P. Langehanenberg, J. Schnekenburger, and G. von Bally, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007). https://doi.org/10.1117/1.2798639
  67. B. Kemper, J. Wibbeling, L. Kastl, J. Schnekenburger, and S. Ketelhut, "Continuous morphology and growth monitoring of different cell types in a single culture using quantitative phase microscopy," Proc. SPIE 9529, 952902:1-7 (2015).
  68. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52-A61 (2008). https://doi.org/10.1364/AO.47.000A52
  69. E. Evans and Y. C. Fung, “Improved measurements of the erythrocyte geometry,” Micro Vascular Research 4, 335-347 (1972).
  70. B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy and impedance volume analyzer,” Cytometry A 73, 895-903 (2008).
  71. K. R. Lee and Y. K. Park, “Quantitative phase imaging unit,” Opt. Lett. 39, 3630-3633 (2014). https://doi.org/10.1364/OL.39.003630
  72. K. H. Kim, Z. Yaqoob, K. R. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. C. So, and Y. K. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39, 6935-6938 (2014). https://doi.org/10.1364/OL.39.006935
  73. N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113, 13327-13330 (2009). https://doi.org/10.1021/jp904746r
  74. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775-777 (2006). https://doi.org/10.1364/OL.31.000775
  75. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nature Meth. 4, 717-719 (2007). https://doi.org/10.1038/nmeth1078
  76. Y. K. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. National Academy of Sciences 107, 6731-6736 (2010). https://doi.org/10.1073/pnas.0909533107
  77. M. Sarmis, B. Simon, M. Debailleul, B. Colicchio, V. Georges, J. J. Delaunay, and O. Haeberlé, “High resolution reflection tomographic diffractive microscopy,” J. Mod. Opt. 57, 740-745 (2010). https://doi.org/10.1080/09500341003624743
  78. X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three dimensional profiling and tracking,” Opt. Eng. 52, 112306 (2014).
  79. B. Rappaz, F. Charrière, C. Depeursinge, P. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt Lett. 33, 744-746 (2008). https://doi.org/10.1364/OL.33.000744
  80. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: Morphometry of testate amoeba,” Opt. Express 14, 7005-7013 (2006). https://doi.org/10.1364/OE.14.007005

Cited by

  1. Stable, Free-space Optical Trapping and Manipulation of Sub-micron Particles in an Integrated Microfluidic Chip vol.6, pp.1, 2016, https://doi.org/10.1038/srep33842
  2. 3-D optical profilometry at micron scale with multi-frequency fringe projection using modified fibre optic Lloyd’s mirror technique vol.105, 2018, https://doi.org/10.1016/j.optlaseng.2017.12.012