한국과 미국 6학년 학생들의 직관적 사고에 의한 수학 문제해결 분석

DOI QR코드

DOI QR Code

이대현
Lee, Dae Hyun

  • 투고 : 2015.09.16
  • 심사 : 2015.12.17
  • 발행 : 2016.02.28

초록

This research examined the Korean and American $6^{th}$ grade students' mathematical problem solving ability and methods via an intuitive thinking. For this, the survey research was used. The researcher developed the questionnaire which consists of problems with intuitive and algorithmic problem solving in number and operation, figure and measurement areas. 57 Korean $6^{th}$ grade students and 60 American $6^{th}$ grade students participated. The result of the analysis showed that Korean students revealed a higher percentage than American students in correct answers. But it was higher in the rate of Korean students attempted to use the algorithm. Two countries' students revealed higher rates in that they tried to solve the problems using intuitive thinking in geometry and measurement areas. Students in both countries showed the lower percentages of correct answer in problem solving to identify the impact of counterintuitive thinking. They were affected by potential infinity concept and the character of intuition in the problem solving process regardless of the educational environments and cultures.

키워드

문제해결;직관;직관적 사고;논리적 사고;알고리즘;반직관적 해결;전직관적 해결;직관적 해결

참고문헌

  1. 강미광 (2008). 무한 개념의 지도방안과 활용 예제-중학교 교육과정을 중심으로-. 수학교육 47(4), 447-465.(Kang, M. K. (2008). A Study on the instruction of the Infinity Concept with suitable examples-focused on Curriculum of Middle School-. The Mathematical Education 47(4), 447-465.)
  2. 경익선(역) (1997). 산수 100가지 난문.기문. 서울: 전파과학사.(Kyeong, I. S.(Trans.) (1997). 100 Difficult, Curious Problems in Arithmetic. Seoul. Jenpagwahaksa.)
  3. 교육공학사전 편찬위원회 (1972). 교육공학사전. 서울: 시청각교육사.(Dictionary Compilation Committee of Educational Technology(1972). Dictionary of Educational Technology. Seoul: Sicheonggakgyoyooksa.)
  4. 교육과학기술부 (2011). 수학과 교육과정. 교육과학기술부.(The Ministry of Education, Science and Technology(2011). Mathematics Curriculum. Seoul: M.E.S.T.)
  5. 김수진, 동효관, 박지현, 김지영, 진의남 (2013). TIMSS 2011 결과에 따른 수학.과학 교육 현황 국제비교. 한국교육과정평가원 연구보고 RRE 2013-7-2.(Kim, S. J., Dong, H. K., Park, J. H., Kim, J. Y., & Jin, E. N. (2013). International Comparative Analysis of Mathematics and Science Education Status in TIMSS 2011. KICE Research Report RRE 2013-7-2.)
  6. 송미영, 김성숙, 구자옥, 임해미, 박혜영, 한정아, 손수경, 양서영 (2014). PISA 2012 주요 결과: 수학.읽기.과학.문제해결력. 한국교육과정평가원 홍보자료 PIM 2014-12.(Song, M. Y., Kim, S. S., Goo, J. O., Im, H. M., Park, H. Y., Han, J. A., Son, S. K., & Yang, S. Y. (2014). PISA Main Result: Mathematics, Reading, Science, Problem solving ability. KICE PR Resource PIM 2014-12.)
  7. 신현용, 이경언 (2010). 무한에 대한 인식이 수학에 미치는 영향. 수학교육 49(2), 259-265.(Shin, H. Y., & Lee, K. E. (2010). Effect on Infinity Perception on Mathematics. The Mathematical Education 49(2), 259-265.)
  8. 이대현 (2001). 무한 개념의 이해와 직관의 역할. 수학교육학연구 11(2), 341-349.(Lee, D. H. (2001). Understanding of the concept of infinity and the role of intuition. The Journal of Educational Research in Mathematics 11(2), 341-349.)
  9. 이대현 (2006).직관의 즉각성 요인과 효과에 대한 고찰. 수학교육 45(3), 263-273.(Lee, D. H. (2006). A Study on the Factors and Effects of Immediacy in Intuition. Mathematics Education 45(3), 263-273.)
  10. 이대현 (2010). 초등학생들의 문제해결 과정에서 직관의 특징에 의한 영향 분석. 한국초등수학교육학회지 14(2), 197-215.(Lee, D. H. (2010). An Analysis on the Effect by the Characteristics of Intuition of Elementary Students in Mathematical Problem Solving Process. Journal of Elementary Mathematics Education in Korea 14(2), 197-215.)
  11. 이대현 (2014). 직관적 수준에서 초등 예비교사들의 문제해결 과정 분석. 학교수학 16(4), 691-708.(Lee, D. H. (2014). An Analysis on the Elementary Preservice Teachers' Problem Solving Process in Intuitive Stages. School Mathematics 16(4), 691-708.)
  12. 이대현, 최승현(2011). 문제해결을 통한 수학적 경험. 서울: 경문사.(Lee, D. H. & Choi, S. H. (2006). The Mathematical Experience via Problem Solving. Seoul: Kyungmoonsa.)
  13. 한명수(역) (1994). 수학 퍼즐 랜드. 서울: 전파과학사.(Han, Y. S.(Trans.) (1994). Mathematics Puzzle Land. Seoul: Jenpagwahaksa.)
  14. Burton, L. (1999). Why is Intuition so important to mathematicians but missing from mathematics education?. For the Learning of Mathematics, 19(3), 27-32.
  15. Chapin, S. H., O'Connor, C., & Anderson, N. C. (2013). Classroom Discussions in Math: A Teacher's Guide for Using Talk Moves to Support the Common Core and More (3rd ed.). Ca: Scholastic Inc.
  16. Fischbein, E. (1982). Intuition and proof. For the Learning of Mathematics 3(2), 9-18.
  17. Fischbein, E. (1987). Intuition in science and mathematics. D. Reidel publishing company.
  18. Fischbein, E., Tirosh, D., & Hess, P. (1979). The Intuition of Infinity. Educational Studies in Mathematics 10, 3-40. https://doi.org/10.1007/BF00311173
  19. Fischbein, E., Tirosh, D., & Melamed, U. (1981). Is it possible to measure the intuitive acceptance of a mathematical statement? Educational Studies in Mathematics 12, 491-512. https://doi.org/10.1007/BF00308145
  20. Hadamard, J. (1945). An essay on the psychology of invention in the mathematical field. Priceton university press, Princeton.
  21. Janvier, C. (1981). Use of Situations in Mathematics Education. Educational Studies in Mathematics, 12, 113-122. https://doi.org/10.1007/BF00386049
  22. Krutetskii, V. A. (1976). The Psychology of Mathematical Abilities in School Children. The University of Chicago Press.
  23. Poincare, H. (1908). Science et Methode. 김형보, 오병승(공역) (1982). 과학의 방법. 서울: 단대출판부.
  24. Wilder, R. L. (1967). The Role of intuition, Science, New Series 156(3775), 605-610.

과제정보

연구 과제 주관 기관 : 광주교육대학교