DOI QR코드

DOI QR Code

Facile Synthesis of MoS2-C60 Nanocomposites and Their Application to Catalytic Reduction and Photocatalytic Degradation

  • Li, Jiulong (Department of Convergence Science, Graduate School, Sahmyook University) ;
  • Ko, Weon Bae (Department of Convergence Science, Graduate School, Sahmyook University)
  • Received : 2016.11.21
  • Accepted : 2016.12.13
  • Published : 2016.12.31

Abstract

$MoS_2$ precursors were synthesized by reacting thioacetamide ($C_2H_5NS$) with sodium molybdate dihydrate ($Na_2MoO_4{\cdot}2H_2O$) in aqueous HCl solution. $MoS_2$ nanoparticles were prepared from dried $MoS_2$ precursors by calcination in an electric furnace at $700^{\circ}C$ for 2 h under an inert argon atmosphere. $MoS_2-C_{60}$ nanocomposites were obtained by heating $MoS_2$ nanoparticles and fullerene ($C_{60}$) together in an electric furnace at $700^{\circ}C$ for 2 h. Their morphological and the structural properties were characterized by powder X-ray diffraction and scanning electron microscopy. The $MoS_2$ nanoparticles and $MoS_2-C_{60}$ nanocomposites were used as catalysts in the reductions of 2-, 3-, and 4-nitrophenol in the presence of sodium borohydride. The photocatalytic activities of the $MoS_2$ nanoparticles and $MoS_2-C_{60}$ nanocomposites were evaluated in the degradation of organic dyes (brilliant green, methylene blue, methyl orange, and rhodamine B) under ultraviolet light (254 nm).

Acknowledgement

Supported by : Sahmyook University

References

  1. H. Liu, T. Lv, C. Zhu, X. Su, and Z. Zhu, "Efficient synthesis of $MoS_2$ nanoparticles modified $TiO_2$ nanobelts with enhanced visible-light-driven photocatalytic activity", J. Mol. Catal. A: Chem., 396, 136 (2015). https://doi.org/10.1016/j.molcata.2014.10.002
  2. H. Liu, T. Lv, X. H. Wu, C. K. Zhu, and Z. F. Zhu, "Preparation and enhanced photocatalytic activity of CdS@RGO core-shell structural microspheres", Appl. Sulf. Sci., 30, 242 (2014).
  3. T. Y. Li, C. Yang, X. H. Rao, F. Xiao, J. D. Wang, and X. T. Su, "Microstructural study of microwave sintered zirconia for dental applications",Ceram. Int., 41, 1255 (2015). https://doi.org/10.1016/j.ceramint.2014.09.055
  4. W. Liu, Q. Hu, F. Mo, J. Hu, Y. Feng, H. Tang, H. Ye, and S. Miao, "Photo-catalytic degradation of methyl orange under visible light by $MoS_2$ nanosheets produced by $H_2SiO_3$ exfoliation", J. Mol. Catal. A: Chem., 395, 322 (2014). https://doi.org/10.1016/j.molcata.2014.08.024
  5. S. Ameen, M. S. Akhtar, M. Nazim, and H. S. Shin, "Rapid photocatalytic degradation of crystal violet dye over ZnO flower nanomaterials", Mater. Lett., 96, 228 (2013). https://doi.org/10.1016/j.matlet.2013.01.034
  6. M. Sun, Y. Wang, Y. Fang, S. Sun, and Z. Yu, "Construction of $MoS_2/CdS/TiO_2$ ternary composites with enhanced photocatalytic activity and stability", J. Alloys Comp., 684, 335 (2016). https://doi.org/10.1016/j.jallcom.2016.05.189
  7. H. J. Fan, C. S. Lu, W. L. W. Lee, M. R. Chiou, and C. C. Chen, "Mechanistic pathways differences between $P25-TiO_2$ and $Pt-TiO_2$ mediated CV photodegradation", J. Hazard. Mater., 185, 227 (2011). https://doi.org/10.1016/j.jhazmat.2010.09.022
  8. H. W. Kei and J. C. Yu, "Sonochemical synthesis and visible light photocatalytic behavior of CdSe and $CdSe/TiO_2$ nanoparticles", J. Mol. Catal. A: Chem., 247, 268 (2006). https://doi.org/10.1016/j.molcata.2005.11.057
  9. Y. B. Chen, L. Z. Wang, G. Q. Lu, X. D. Yao, and L. J. Guo, "Nanoparticles enwrapped with nanotubes: a unique architecture of CdS/titanate nanotubes for efficient photocatalytic hydrogen production from water", J. Mater. Chem., 21, 5134 (2011). https://doi.org/10.1039/c0jm03945d
  10. A. Goyal, S. Bansal, and S. Singhal, "Facile reduction of nitrophenols: Comparative catalytic efficiency of $MFe_2O_4$ (M= Ni, Cu, Zn) nano ferrites", Int. J. Hydrogen Energy, 39, 4895 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.050
  11. C. V. Rode, M. J. Vaidya, and R. V. Chaudhari, "Synthesis of p-aminophenol by catalytic hydrogenation of nitrobenzene", Org. Process Res. Dev., 3, 465 (1999). https://doi.org/10.1021/op990040r
  12. M. Haruta and M. Date, "Advances in the catalysis of Au nanoparticles", Appl. Catal. A: Gen., 222, 427 (2001). https://doi.org/10.1016/S0926-860X(01)00847-X
  13. K. S. Shin, Y. K. Cho, J. Y. Choi, and K. Kim, "Facile synthesis of silver-deposited silanized magnetite nanoparticles and their application for catalytic reduction of nitrophenols", Appl. Catal. A: Gen., 413, 170 (2012).
  14. S. K. Ghosh, M. Mandal, S. Kundu, S. Nath, and T. Pal, "Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution", Appl. Catal. A: Gen., 268, 61 (2004). https://doi.org/10.1016/j.apcata.2004.03.017
  15. W. R. Zhao, Y. Wang, Y. Yang, J. Tang, and Y. N. Yang, "Carbon spheres supported visible-light-driven $CuO-BiVO_4$ heterojunction: preparation, characterization, and photocatalytic properties", Appl. Catal. B: Environ., 115, 90 (2012).
  16. H. J. Song, S. You, X. H. Jia, and J. Yang, "$MoS_2$ nanosheets decorated with magnetic $Fe_3O_4$ nanoparticles and their ultrafast adsorption for wastewater treatment", Ceram. Int., 41, 13896 (2015). https://doi.org/10.1016/j.ceramint.2015.08.023
  17. B. Pourabbas and B. Jamshidi, "Preparation of $MoS_2$ nanoparticles by a modified hydrothermal method and the photocatalytic activity of $MoS_2/TiO_2$ hybrids in photo-oxidation of phenol", Chem. Eng. J., 138, 55 (2008). https://doi.org/10.1016/j.cej.2007.05.028
  18. X. Z. Wang, S. X. Yang, Q. Yue, F. M. Wu, and J. B. Li, "Response of $MoS_2$ nanosheet field effect transistor under different gas environments and its long wavelength photoresponse characteristics", J. Alloys Comp., 615, 989 (2014). https://doi.org/10.1016/j.jallcom.2014.07.016
  19. J. Lei, Z. Jiang, X. Lu, G. Nie, and C. Wang, "Synthesis of Few-Layer $MoS_2$ Nanosheets-Wrapped Polyaniline Hierarchical Nanostructures for Enhanced Electrochemical Capacitance Performance", Electrochim. Acta, 176, 149 (2015). https://doi.org/10.1016/j.electacta.2015.07.028
  20. X. Wu, X. Yah, Y. Dai, J. Wang, J. Wang, and X. Cheng, "Facile synthesis of $AgNPs/MoS_2$ nanocomposite with excellent electrochemical properties", Mater. Lett., 152, 128 (2015). https://doi.org/10.1016/j.matlet.2015.03.118
  21. J. Zhou, H. Xiao, B. Zhou, F. Huang, S. Zhou, and W. Xiao, "Hierarchical $MoS_2-rGO$ nanosheets with high $MoS_2$ loading with enhanced electro-catalytic performance", Appl. Surf. Sci., 358, 152 (2015). https://doi.org/10.1016/j.apsusc.2015.07.187
  22. W. J. Li, E. W. Shi, Z. Z. Chen, H. Ogino, and T. Fukuda, "Hydrothermal synthesis of $MoS_2$ nanowires", J. Cryst. Growth, 250, 418 (2003). https://doi.org/10.1016/S0022-0248(02)02412-0
  23. J. H. Zhan, Z. D. Zhang, X. F. Qian, C. Wang, Y. Xie, and T. Qian, "Solvothermal synthesis of nanocrystalline $MoS_2$ from $MoO_3$ and elemental sulfur", J. Solid State Chem., 141, 270 (1998). https://doi.org/10.1006/jssc.1998.7991
  24. D. Vollath and D. V. Szabo, "Synthesis of nanocrystalline $MoS_2$ and $WS_2$ in a microwave plasma", Mater. Lett., 35, 236 (1998). https://doi.org/10.1016/S0167-577X(97)00247-4
  25. Q. Li, E. C. Walter, W. E. van der Veer, B. Murray, J. T. Newberg, E. W. Bohannan, J. A. Switzer, J. C. Hemminger, and R. M. Penner, "Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis", J. Phys. Chem. B, 109, 3169 (2005). https://doi.org/10.1021/jp045032d
  26. J. T. Richardson, "Electronic properties of unsupported cobaltpromoted molybdenum sulfide", J. Catal., 112, 313 (1988). https://doi.org/10.1016/0021-9517(88)90143-1
  27. X. Zong, J. F. Han, G. J. Ma, H. J. Yan, G. P. Wu, and C. Li, "Enhancement of photocatalytic $H_2$ evolution on CdS by loading $MoS_2$ as cocatalyst under visible light irradiation", J. Am. Chem. Soc., 130, 7176 (2008). https://doi.org/10.1021/ja8007825
  28. Y. Xu and R. Xu, "Nickel-based cocatalysts for photocatalytic hydrogen production", Appl. Surf. Sci., 351, 779 (2015). https://doi.org/10.1016/j.apsusc.2015.05.171
  29. D. Hou, W. Zhou, X. Liu, K. Zhou, J. Xie, G. Li, and S. Chen, "Pt nanoparticles/$MoS_2$ nanosheets/carbon fibers as efficient catalyst for the hydrogen evolution reaction", Elect. Acta, 166, 26 (2015). https://doi.org/10.1016/j.electacta.2015.03.067
  30. D. H. Youn, C. Jo, J. Y. Kim, J. Lee, and J. S. Lee, "Ultrafast synthesis of $MoS_2$ or $WS_2$-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries", J. Power Sources, 295, 228 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.013
  31. M. A. Al-Daous, "Graphene-$MoS_2$ composite: Hydrothermal synthesis and catalytic property in hydrodesulfurization of dibenzothiophene", Catal. Commun., 72, 180 (2015). https://doi.org/10.1016/j.catcom.2015.09.030
  32. X. Zhao, H. Liu, Y. Shen, and J. Qu, "Photocatalytic reduction of bromate at $C_{60}$ modified $Bi_2MoO_6$ under visible light irradiation", Appl. Catal. B: Environ., 106, 63 (2011).
  33. T. Hasobe, H. Imahori, S. Fukuzumi, and P. V. Kamat, "Light energy conversion using mixed molecular nanoclusters. Porphyrin and $C_{60}$ cluster films for efficient photocurrent generation", J. Phys. Chem. B, 107, 12105 (2003). https://doi.org/10.1021/jp035854v
  34. K. Chang, W. Chen, L. Ma, H. Li, H. Li, F. Huang, Z. Xu, Q. Zhang, and J. Y. Lee, "Graphene-like $MoS_2$/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries", J. Mater. Chem., 21, 6251 (2011). https://doi.org/10.1039/c1jm10174a
  35. K. Miura and M. Ishikawa, "$C_{60}$ intercalated graphite as nanolubricants", Materials, 3, 4510 (2010). https://doi.org/10.3390/ma3094510
  36. Y. Xu, E. Hu, K. Hu, Y. Xu, and X. Hu, "Formation of an adsorption film of $MoS_2$ nanoparticles and dioctyl sebacate on a steel surface for alleviating friction and wear", Tribol. Int., 92, 172 (2015). https://doi.org/10.1016/j.triboint.2015.06.011
  37. D. James and T. Zubkov, "Photocatalytic properties of free and oxide-supported $MoS_2$ and $WS_2$ nanoparticles synthesized without surfactants", J. Photochem. Photobiol. A: Chem., 262, 45 (2013). https://doi.org/10.1016/j.jphotochem.2013.04.015
  38. D. Y. Liang, C. Cui, H. H. Hu, Y. P. Wang, S. Xu, B. L. Ying, P. G. Li, B. Q. Lu, and H. L. Shen, "One-step hydrothermal synthesis of anatase $TiO_2$/reduced graphene oxide nanocomposites with enhanced photocatalytic activity", J. Alloys Compd., 582, 236 (2014). https://doi.org/10.1016/j.jallcom.2013.08.062