Facile Synthesis of MoS2-C60 Nanocomposites and Their Application to Catalytic Reduction and Photocatalytic Degradation

  • Li, Jiulong (Department of Convergence Science, Graduate School, Sahmyook University) ;
  • Ko, Weon Bae (Department of Convergence Science, Graduate School, Sahmyook University)
  • Received : 2016.11.21
  • Accepted : 2016.12.13
  • Published : 2016.12.31


$MoS_2$ precursors were synthesized by reacting thioacetamide ($C_2H_5NS$) with sodium molybdate dihydrate ($Na_2MoO_4{\cdot}2H_2O$) in aqueous HCl solution. $MoS_2$ nanoparticles were prepared from dried $MoS_2$ precursors by calcination in an electric furnace at $700^{\circ}C$ for 2 h under an inert argon atmosphere. $MoS_2-C_{60}$ nanocomposites were obtained by heating $MoS_2$ nanoparticles and fullerene ($C_{60}$) together in an electric furnace at $700^{\circ}C$ for 2 h. Their morphological and the structural properties were characterized by powder X-ray diffraction and scanning electron microscopy. The $MoS_2$ nanoparticles and $MoS_2-C_{60}$ nanocomposites were used as catalysts in the reductions of 2-, 3-, and 4-nitrophenol in the presence of sodium borohydride. The photocatalytic activities of the $MoS_2$ nanoparticles and $MoS_2-C_{60}$ nanocomposites were evaluated in the degradation of organic dyes (brilliant green, methylene blue, methyl orange, and rhodamine B) under ultraviolet light (254 nm).


Supported by : Sahmyook University


  1. H. Liu, T. Lv, C. Zhu, X. Su, and Z. Zhu, "Efficient synthesis of $MoS_2$ nanoparticles modified $TiO_2$ nanobelts with enhanced visible-light-driven photocatalytic activity", J. Mol. Catal. A: Chem., 396, 136 (2015).
  2. H. Liu, T. Lv, X. H. Wu, C. K. Zhu, and Z. F. Zhu, "Preparation and enhanced photocatalytic activity of CdS@RGO core-shell structural microspheres", Appl. Sulf. Sci., 30, 242 (2014).
  3. T. Y. Li, C. Yang, X. H. Rao, F. Xiao, J. D. Wang, and X. T. Su, "Microstructural study of microwave sintered zirconia for dental applications",Ceram. Int., 41, 1255 (2015).
  4. W. Liu, Q. Hu, F. Mo, J. Hu, Y. Feng, H. Tang, H. Ye, and S. Miao, "Photo-catalytic degradation of methyl orange under visible light by $MoS_2$ nanosheets produced by $H_2SiO_3$ exfoliation", J. Mol. Catal. A: Chem., 395, 322 (2014).
  5. S. Ameen, M. S. Akhtar, M. Nazim, and H. S. Shin, "Rapid photocatalytic degradation of crystal violet dye over ZnO flower nanomaterials", Mater. Lett., 96, 228 (2013).
  6. M. Sun, Y. Wang, Y. Fang, S. Sun, and Z. Yu, "Construction of $MoS_2/CdS/TiO_2$ ternary composites with enhanced photocatalytic activity and stability", J. Alloys Comp., 684, 335 (2016).
  7. H. J. Fan, C. S. Lu, W. L. W. Lee, M. R. Chiou, and C. C. Chen, "Mechanistic pathways differences between $P25-TiO_2$ and $Pt-TiO_2$ mediated CV photodegradation", J. Hazard. Mater., 185, 227 (2011).
  8. H. W. Kei and J. C. Yu, "Sonochemical synthesis and visible light photocatalytic behavior of CdSe and $CdSe/TiO_2$ nanoparticles", J. Mol. Catal. A: Chem., 247, 268 (2006).
  9. Y. B. Chen, L. Z. Wang, G. Q. Lu, X. D. Yao, and L. J. Guo, "Nanoparticles enwrapped with nanotubes: a unique architecture of CdS/titanate nanotubes for efficient photocatalytic hydrogen production from water", J. Mater. Chem., 21, 5134 (2011).
  10. A. Goyal, S. Bansal, and S. Singhal, "Facile reduction of nitrophenols: Comparative catalytic efficiency of $MFe_2O_4$ (M= Ni, Cu, Zn) nano ferrites", Int. J. Hydrogen Energy, 39, 4895 (2014).
  11. C. V. Rode, M. J. Vaidya, and R. V. Chaudhari, "Synthesis of p-aminophenol by catalytic hydrogenation of nitrobenzene", Org. Process Res. Dev., 3, 465 (1999).
  12. M. Haruta and M. Date, "Advances in the catalysis of Au nanoparticles", Appl. Catal. A: Gen., 222, 427 (2001).
  13. K. S. Shin, Y. K. Cho, J. Y. Choi, and K. Kim, "Facile synthesis of silver-deposited silanized magnetite nanoparticles and their application for catalytic reduction of nitrophenols", Appl. Catal. A: Gen., 413, 170 (2012).
  14. S. K. Ghosh, M. Mandal, S. Kundu, S. Nath, and T. Pal, "Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution", Appl. Catal. A: Gen., 268, 61 (2004).
  15. W. R. Zhao, Y. Wang, Y. Yang, J. Tang, and Y. N. Yang, "Carbon spheres supported visible-light-driven $CuO-BiVO_4$ heterojunction: preparation, characterization, and photocatalytic properties", Appl. Catal. B: Environ., 115, 90 (2012).
  16. H. J. Song, S. You, X. H. Jia, and J. Yang, "$MoS_2$ nanosheets decorated with magnetic $Fe_3O_4$ nanoparticles and their ultrafast adsorption for wastewater treatment", Ceram. Int., 41, 13896 (2015).
  17. B. Pourabbas and B. Jamshidi, "Preparation of $MoS_2$ nanoparticles by a modified hydrothermal method and the photocatalytic activity of $MoS_2/TiO_2$ hybrids in photo-oxidation of phenol", Chem. Eng. J., 138, 55 (2008).
  18. X. Z. Wang, S. X. Yang, Q. Yue, F. M. Wu, and J. B. Li, "Response of $MoS_2$ nanosheet field effect transistor under different gas environments and its long wavelength photoresponse characteristics", J. Alloys Comp., 615, 989 (2014).
  19. J. Lei, Z. Jiang, X. Lu, G. Nie, and C. Wang, "Synthesis of Few-Layer $MoS_2$ Nanosheets-Wrapped Polyaniline Hierarchical Nanostructures for Enhanced Electrochemical Capacitance Performance", Electrochim. Acta, 176, 149 (2015).
  20. X. Wu, X. Yah, Y. Dai, J. Wang, J. Wang, and X. Cheng, "Facile synthesis of $AgNPs/MoS_2$ nanocomposite with excellent electrochemical properties", Mater. Lett., 152, 128 (2015).
  21. J. Zhou, H. Xiao, B. Zhou, F. Huang, S. Zhou, and W. Xiao, "Hierarchical $MoS_2-rGO$ nanosheets with high $MoS_2$ loading with enhanced electro-catalytic performance", Appl. Surf. Sci., 358, 152 (2015).
  22. W. J. Li, E. W. Shi, Z. Z. Chen, H. Ogino, and T. Fukuda, "Hydrothermal synthesis of $MoS_2$ nanowires", J. Cryst. Growth, 250, 418 (2003).
  23. J. H. Zhan, Z. D. Zhang, X. F. Qian, C. Wang, Y. Xie, and T. Qian, "Solvothermal synthesis of nanocrystalline $MoS_2$ from $MoO_3$ and elemental sulfur", J. Solid State Chem., 141, 270 (1998).
  24. D. Vollath and D. V. Szabo, "Synthesis of nanocrystalline $MoS_2$ and $WS_2$ in a microwave plasma", Mater. Lett., 35, 236 (1998).
  25. Q. Li, E. C. Walter, W. E. van der Veer, B. Murray, J. T. Newberg, E. W. Bohannan, J. A. Switzer, J. C. Hemminger, and R. M. Penner, "Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis", J. Phys. Chem. B, 109, 3169 (2005).
  26. J. T. Richardson, "Electronic properties of unsupported cobaltpromoted molybdenum sulfide", J. Catal., 112, 313 (1988).
  27. X. Zong, J. F. Han, G. J. Ma, H. J. Yan, G. P. Wu, and C. Li, "Enhancement of photocatalytic $H_2$ evolution on CdS by loading $MoS_2$ as cocatalyst under visible light irradiation", J. Am. Chem. Soc., 130, 7176 (2008).
  28. Y. Xu and R. Xu, "Nickel-based cocatalysts for photocatalytic hydrogen production", Appl. Surf. Sci., 351, 779 (2015).
  29. D. Hou, W. Zhou, X. Liu, K. Zhou, J. Xie, G. Li, and S. Chen, "Pt nanoparticles/$MoS_2$ nanosheets/carbon fibers as efficient catalyst for the hydrogen evolution reaction", Elect. Acta, 166, 26 (2015).
  30. D. H. Youn, C. Jo, J. Y. Kim, J. Lee, and J. S. Lee, "Ultrafast synthesis of $MoS_2$ or $WS_2$-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries", J. Power Sources, 295, 228 (2015).
  31. M. A. Al-Daous, "Graphene-$MoS_2$ composite: Hydrothermal synthesis and catalytic property in hydrodesulfurization of dibenzothiophene", Catal. Commun., 72, 180 (2015).
  32. X. Zhao, H. Liu, Y. Shen, and J. Qu, "Photocatalytic reduction of bromate at $C_{60}$ modified $Bi_2MoO_6$ under visible light irradiation", Appl. Catal. B: Environ., 106, 63 (2011).
  33. T. Hasobe, H. Imahori, S. Fukuzumi, and P. V. Kamat, "Light energy conversion using mixed molecular nanoclusters. Porphyrin and $C_{60}$ cluster films for efficient photocurrent generation", J. Phys. Chem. B, 107, 12105 (2003).
  34. K. Chang, W. Chen, L. Ma, H. Li, H. Li, F. Huang, Z. Xu, Q. Zhang, and J. Y. Lee, "Graphene-like $MoS_2$/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries", J. Mater. Chem., 21, 6251 (2011).
  35. K. Miura and M. Ishikawa, "$C_{60}$ intercalated graphite as nanolubricants", Materials, 3, 4510 (2010).
  36. Y. Xu, E. Hu, K. Hu, Y. Xu, and X. Hu, "Formation of an adsorption film of $MoS_2$ nanoparticles and dioctyl sebacate on a steel surface for alleviating friction and wear", Tribol. Int., 92, 172 (2015).
  37. D. James and T. Zubkov, "Photocatalytic properties of free and oxide-supported $MoS_2$ and $WS_2$ nanoparticles synthesized without surfactants", J. Photochem. Photobiol. A: Chem., 262, 45 (2013).
  38. D. Y. Liang, C. Cui, H. H. Hu, Y. P. Wang, S. Xu, B. L. Ying, P. G. Li, B. Q. Lu, and H. L. Shen, "One-step hydrothermal synthesis of anatase $TiO_2$/reduced graphene oxide nanocomposites with enhanced photocatalytic activity", J. Alloys Compd., 582, 236 (2014).