DOI QR코드

DOI QR Code

Overview of Polyamide Resins and Composites : A Review

  • 투고 : 2016.12.07
  • 심사 : 2016.12.13
  • 발행 : 2016.12.31

초록

Polyamide (PA) is one of five engineering plastic materials which has good mechanical properties and competitive price compared to other engineering plastics and it has various applications including in the areas of automotives, electronics and aerospace industry. Even though PA market grows fast compared to other engineering plastics, it has few organized literatures regarding researches and applications. In this paper, we review overall background, characteristics, formulation, current market trends and technology development of PA resins and their composites.

참고문헌

  1. J. Rohrer, "Automotive light-weighting pushed", Rubber World, 252, 4 (2015).
  2. J. M. Margolis, Ed., "Engineering plastics Handbook", McGraw-Hill, 2006.
  3. F. Aftalion, "A history of the international chemical industry", Chemical Heritage Foundation, 2001.
  4. W. H. Carothers and G. J. Berchet, "Studies on polymerization and ring formation. viii. amides from $\varepsilon$-aminocaproic acid", J. Am. Chem. Soc., 52, 5289 (1930). https://doi.org/10.1021/ja01375a091
  5. W. H. Carothers, "Linear condensation polymers", U.S.Patent 2071250 (1937).
  6. W. H. Carothers, "Linear polyamides and their production", U.S.Patent 2130523 (1938).
  7. W. H. Carothers, "Synthetic fiber", U.S.Patent 2130948 (1938).
  8. 福本修, "Polyamide 樹脂Handbook", 日刊工業新聞社, 1987.
  9. J. Brandrup, "Polymer Handbook", Interscience, New York, 1966.
  10. M. Lewin, E. M. Pearce, "Handbook of Fiber Chemistry, Second Edition, Revised and Expanded", CRC Press, 1998.
  11. I. B. Page, "Polyamides as Engineering Thermoplastic Materials", iSmithers Rapra Publishing, 2000.
  12. P. Schlack, Textilindustrie, 65, 1052 (1963).
  13. N. Ogata, "Studies on polycondensation reactions of nylon salt. II. The rate of polycondensation reaction of nylon 66 salt in the presence of water ", Makromol. Chem., 43, 117 (1961). https://doi.org/10.1002/macp.1961.020430111
  14. P. L. Ku, "Nylon 66 fundamentals and its processes", Adv. Poly. Tech., 6, 267 (1986). https://doi.org/10.1002/adv.1986.060060304
  15. A. Muller and R. Pfluger, Plastics, 24, 350 (1959).
  16. C. De Rosa and F. Auriemma, "Crystals and Crystallinity in Polymers", John Wiley & Sons, 2013.
  17. H. Mitomo, "Correspondence of lamellar thickness to melting point of nylon-6,6 single crystal", Polymer, 29, 1635 (1988). https://doi.org/10.1016/0032-3861(88)90275-3
  18. H. Mimoto, "Estimation of lamellar thickness of nylon 66 single crystal by hydrolysis and gel permeation chromatography", J. Poly. Sci., Poly. Phys., 26, 467 (1988). https://doi.org/10.1002/polb.1988.090260220
  19. B. B. Burnett and W. F. McDevit, "Kinetics of spherulite growth in high polymers", J. Appl. Phys., 28, 1101 (1957). https://doi.org/10.1063/1.1722586
  20. C. W. Bunn and E. V. Garner, "The crystal structures of two polyamides ('Nylons')", Proc. Roy. Soc., A189, 39 (1947).
  21. S. M. Kim and K. J. Kim, "Effects of moisture and temperature on recrystallization and mechanical property improvement of PA66/GF composite", Polymer(Korea), 39, 880 (2015).
  22. M. T. Hahn, R. W. Hertzberg, J. A. Manson, and L. H. Sperling, "The influence of temperature and absorbed water on the fatigue crack propagation in nylon66", Polymer, 27, 1885 (1986). https://doi.org/10.1016/0032-3861(86)90176-X
  23. J. L. White and K.-J. Kim, "Thermoplastic and Rubber Compounds Technology and Physical Chemistry", Carl Hanser Verlag GmbH & Co. KG, 2008.
  24. D. V. Rosato, D. V. Rosato, "Reinforced Plastics Handbook", Elsevier, 2004.
  25. R. J. M. Borrgreve and R. J. Gaymannans, "Impact behaviour of nylon-rubber blends: 4. Effect of the coupling agent, maleic anhydride", Polymer, 30, 63 (1989). https://doi.org/10.1016/0032-3861(89)90384-4
  26. M. J. Modic and L. A. Pottick, "Modification and compatibilization of nylon 6 with functionalized styrenic block copolymers", Polym. Eng. Sci., 33, 819 (1993). https://doi.org/10.1002/pen.760331306
  27. V. J. Triacca, S. Ziaee, J. W. Barlow, H. Keskkular, and D. R. Paul, "Reactive compatibilization of blends of nylon 6 and ABS materials", Polymer, 32, 1401 (1991). https://doi.org/10.1016/0032-3861(91)90420-N
  28. Y. Takeda, H. Keskkular, and D. R. Paul, "Effect of polyamide functionality on the morphology and toughness of blends with a functionalized block copolymer", Polymer, 33, 3173 (1992). https://doi.org/10.1016/0032-3861(92)90231-K
  29. A. J. Oshinski, H. Keskkular, and D. R. Paul, "Rubber toughening of polyamides with functionalized block copolymers: 2. Nylon66", Polymer, 33, 284 (1992). https://doi.org/10.1016/0032-3861(92)90985-6
  30. A. Misra, G. Sawhney, and R. A. Kumar, "Structure and properties of compatibilized blends of polyamide-6 and ABS", J. Appl. Polym. Sci., 50, 1179 (1993). https://doi.org/10.1002/app.1993.070500708
  31. B. Majumdar, H. Keskkular, and D. R. Paul, "Morphology of nylon 6/ABS blends compatibilized by a styrene/maleic anhydride copolymer", Polymer, 35, 3164 (1994). https://doi.org/10.1016/0032-3861(94)90117-1
  32. B. Majumdar, H. Keskkular, and D. R. Paul, "Mechanical properties and morphology of nylon-6/acrylonitrile-butadiene- styrene blends compatibilized with imidized acrylic polymers", Polymer, 35, 5453 (1994). https://doi.org/10.1016/S0032-3861(05)80009-6
  33. R. A. Kudva, H. Keskkular, and D. R. Paul, "Compatibilization of nylon 6/ABS blendsusing glycidyl methacrylate/methyl methacrylate copolymers", Polymer, 39, 2447 (1998). https://doi.org/10.1016/S0032-3861(97)00583-1
  34. R. A. Kudva, H. Keskkular, and D. R. Paul, "Properties of compatibilized nylon 6/ABS blends: Part I. Effect of ABS type", Polymer, 41, 225 (2000). https://doi.org/10.1016/S0032-3861(99)00105-6
  35. N. Kitayama, H. Keskkular, and D. R. Paul, "Reactive compatibilization of nylon 6/styrene-acrylonitrile copolymer blends. Part 1. Phase inversion behavior", Polymer, 41, 8041 (2002).
  36. L. W. Kim, S. H. Yoo, and C. K. Kim, "Characteristics of nylon 6/poly(acrylonitrile-co-styrene-co-acrylic rubber) blends containing compatibilizer", Polymer(Korea), 31, 8 (2007).
  37. E. M. Araujo, E. Hage Jr., and A. J. F. Carvalho, "Acrylonitrile-butadiene-styrene toughened nylon 6: The influences of compatibilizer on morphology and impact properties", J. Appl. Polym. Sci., 87, 842 (2003). https://doi.org/10.1002/app.11502
  38. D. R. Paul and J. W. Barlow, "Polymer blends", J. Macromol. Sci. Rev. Macromol. Chem., C-18, 109 (1980).
  39. N. Platzer Ed., "Copolymer, Polyblend and Composites", American Chemical Society, 1975.
  40. R. K. Gupta, E. Kennel, and K.-J. Kim, "Polymer Nanocomposites Handbook", CRC Press, 2009.
  41. A. Kelly, "Concise Encyclopedia of Composite Materials", Elsevier, 2012.
  42. H. C. Kim, "Industrial application of fiber reinforced plastics", Polymer(Korea), 3, 354 (1979).
  43. J. F. Dockum, Jr., "Fiberglass, in Handbook of Reinforcement for Plastics, J.V. Milewskiand H.S. Katz, Ed.", Van Nostrand Reinhold Company, New York, 1987.
  44. K. L. Loewenstein, "The Manufacturing Technology of Continuous Glass Fibers, 3rdrevised ed.", Elsevier, 1993.
  45. F. T. Wallenberger, "Structural Silicate and Silica Glass Fibers, in Advanced Inorganic Fibers Processes, Structures, Properties, Applications, F.T. Wallenberger, Ed.", Kluwer Academic Publishers, 1999.
  46. F. T. Wallenberger, "Melt Viscosity and Modulus of Bulk Glasses and Fibers: Challenges for the Next Decade", in Present State and Future Prospects of Glass Science and Technology, Proc. of the Norbert Kreidl Symposium (Triesenberg, Liechtenstein), (1994).
  47. P. F. Aubourg, C. Crall, J. Hadley, R. D. Kaverman, and D. M. Miller, "Glass Fibers, Ceramics and Glasses. Engineered Materials Handbook", Vol. 4, ASM International, 1991.
  48. J. B. Donnet and R. C. Bansal, "Carbon Fibers", Marcel Dekker, New York, 1984.
  49. E. Fitzer, "Carbon Fibers and Their Composites", Springer, Berlin, 1985.
  50. A. D. Cato and D. D. Edie, "Flow behavior of mesophase pitch", Carbon, 41, 1411 (2003). https://doi.org/10.1016/S0008-6223(03)00050-2
  51. L. Hong, A. Moshonov, and J. D. Muzzy, "Electrochemical polymerization of xylene derivatives on carbon fiber", Polym. Compos., 12, 191 (1991). https://doi.org/10.1002/pc.750120309
  52. L. T. Drzal and M. Madhukar, "Fibre-matrix adhesion and its relationship to composite mechanical properties", J. Mater. Sci., 28, 569 (1993). https://doi.org/10.1007/BF01151234
  53. S. Kim, Y. Jung, and S. J. Park, "Catalytic activity of electrically deposited platinum nanoparticle catalysts on graphite nanofibers", Colloids Surf. A. Physicochem. Eng. Aspects, 313-314, 220 (2008). https://doi.org/10.1016/j.colsurfa.2007.04.098
  54. B. J. Kim, Y. S. Lee, and S. J. Park, "Novel porous carbons synthesized from polymeric precursors for hydrogen storage", Int. J. Hydrogen Energ., 33, 2254 (2008). https://doi.org/10.1016/j.ijhydene.2008.02.019
  55. C. Y. Kim, "Recent Trends in Carbon Fiber Technology", Polymer(Korea), 10, 500 (1986).
  56. C. J. Kim, H. D. Choi, K. S. Suh, and H. G. Yoon, "Electrical Properties and Electromagnetic Shielding Effectiveness of Milled Carbon Fiber/Nylon Composites", Polymer(Korea), 27, 201 (2003).
  57. S. Yamane, T. Higuchi, and K. Yamasaka, "Process for producing high-strength, high-modulus carbon fibers", U.S.Patent 4917836 (1990).
  58. M. Kobayashi, M. ozaki, and Y. Matsuhisa, "Carbon-fibers and a method of producing them", U.S.Patent 6638615 (2003).
  59. F. Nakao and N. Sugiura, "Carbon fibers having modified surfaces and process for producing the same", U.S.Patent 5124010 (1992).
  60. M. Nakatani, Y. Imai, H. Yoneyama, and Y. Tanuku, "Carbon fibers having high tenacity and high modulus of elasticity and process for producing the same", U.S.Patent 5281477 (1994).
  61. H. Takahashi and K. Yamamoto, "Acrylic fiber strand suitable for use in carbon fiber production and process for producing the same", U.S.Patent 5286563 (1994).
  62. H. Kosuda, Y. Nagata, and Y. Endoh, "Method for producing carbon fiber reinforced thermoplastic resin product", U.S. Patent 4897286 (1990).
  63. J. B. Donnet and R. C. Bansal, "Carbon Fibers, 2nd ed.", Marcel Dekker, New York, 1990.
  64. M. M. Schwartz, "Composite Materials Handbook", McGraw-Hill, New York, 1992.
  65. Toyoba Co., "Technical information datasheet", Super high performance fiber Zylon, (1998).
  66. J. H. Park, W. N. Kim, I. H. Kwon, S. Lim, M. B. Ko, and C. R. Choe, "Effects of processing conditions of injection molding on the microstructure of long fiber reinforced nylon composites", Polymer(Korea), 23, 681 (1999).
  67. S. C. Park, H. G. Kim, and K. E. Min, "Effect of MMT on anti-water absorption of polyamide/MMT nanocomposites", Polymer(Korea), 37, 113 (2013).
  68. D. Heiken and W. Barentsen, "Particle dimensions in polystyrene/polyethylene blends as a function of their melt viscosity and of the concentration of added graft copolymer", Polymer, 18, 69 (1977). https://doi.org/10.1016/0032-3861(77)90264-6
  69. F. Ide and A. Hasegawa, "Studies on polymer blend of nylon 6 and polypropylene or nylon 6 and polystyrene using the reaction of polymer", J. Appl. Polym. Sci., 18, 963 (1974). https://doi.org/10.1002/app.1974.070180402
  70. R. Greco, M. Malinconico, and E. Martruscelli, "Role of degree of grafting of functionalized ethylene-propylene rubber on the properties of rubber-modified polyamide-6", Polymer, 28, 1185 (1987). https://doi.org/10.1016/0032-3861(87)90262-X
  71. W. H. Sharkey and W. E. Mochel, "Mechanism of the photooxidation of amides", J. Am. Chem. Soc., 81, 3000 (1959). https://doi.org/10.1021/ja01521a021
  72. B. F. Sagar, "Autoxidation of N-alkyl amides. Part III. Mechanism of thermal oxidation", J. Chem. Soc. B, 1047 (1967). https://doi.org/10.1039/j29670001047
  73. M. H. Heo, S. W. Kim, G. R. Ha, T. Mori, K. H. Hong, and K. H. Seo, "Discoloration and the effect of antioxidants on thermo-oxidative degradation of polyamide 6", Polymer (Korea), 26, 452 (2002).
  74. E. Lisa, and J. Pospisil, "Antioxidants and stabilizers. XXXVII. A contribution to the elucidation of differences between the antioxidative activities of isomeric dihydric phenols", J. Polym. Sci., Symposium, 40, 209 (1973).
  75. J. Koch, "Zum mechanismus der inhibierenden reaktion phenolischer antioxydantien bei der verarbeitung von polypropylene", Angew. Macromol. Chem., 20, 21 (1971). https://doi.org/10.1002/apmc.1971.050200103
  76. J. Chaichanawong, C. Thongchuea, and S. Areerat, "Effect of moisture on the mechanical properties of glass fiber reinforced polyamide composites", Adv. Powder Technol., 27, 898 (2016). https://doi.org/10.1016/j.apt.2016.02.006
  77. S. S. Ray and M. Okamoto, "Polymer/layered silicate nanocomposites: a review from preparation to processing", Prog. Polym. Sci., 28, 1539 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002
  78. W. S. Chow and Z. A. MohdIshak, "Mechanical, morphological and rheological properties of polyamide 6/organo-montmorillonite nanocomposites", Express Polym. Lett., 1, 77 (2007). https://doi.org/10.3144/expresspolymlett.2007.14
  79. G.-M. Kim, D.-H. Lee, B. Hoffmann, J. Kressler, and G. Stoppelmann, "Influence of nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites", Polymer, 42, 1095 (2001). https://doi.org/10.1016/S0032-3861(00)00468-7
  80. X. Liu, Q. Wu, and L. A. Berglund, "Polymorphism in polyamide 66/clay nanocomposites", Polymer, 43, 4967 (2002). https://doi.org/10.1016/S0032-3861(02)00331-2
  81. A. Lonjon, I. Caffrey, D. Carponcin, E. Dantras, and C. Lacabanne, "High electrically conductive composites of polyamide 11 filled with silver nanowires: Nanocomposites processing, mechanical and electrical analysis", J. Non-Cryst. Solids, 376, 199 (2013). https://doi.org/10.1016/j.jnoncrysol.2013.05.020
  82. H. Ha and S. C. Kim, "Morphology and properties of polyamide/multi-walled carbon nanotube composites", Macromol. Res., 18, 660 (2010). https://doi.org/10.1007/s13233-010-0702-y
  83. J. Chen, J.-W. Chen, H.-M. Chen, J.-H. Yang, C. Chen, and Y. Wang, "Effect of compatibilizer and clay on morphology and fracture resistance of immiscible high density polyethylene/polyamide 6 blend", Composites Part B, 54, 422 (2013). https://doi.org/10.1016/j.compositesb.2013.06.014
  84. W. S. Chow, Z. A. MohdIshak, J. Karger-Kocsis, A. A. Apostolov, and U. S. Ishiaku, "Compatibilizing effect of maleated polypropylene on the mechanical properties and morphology of injection molded polyamide 6/polypropylene/organoclay nanocomposites", Polymer, 44, 7427 (2003). https://doi.org/10.1016/j.polymer.2003.09.006
  85. W. S. Chow, Z. A. MohdIshak, U. S. Ishiaku, J. Karger-Kocsis, and A. A. Apostolov, "The effect of organoclay on the mechanical properties and morphology of injection-molded polyamide 6/polypropylene nanocomposites", J. Appl. Polym. Sci., 91, 175 (2004). https://doi.org/10.1002/app.13244
  86. W. S. Chow, A. Abu Bakar, Z. A. MohdIshak, J. Karger-Kocsis, and U. S. Ishiaku, "Effect of maleic anhydride-grafted ethylene-propylene rubber on the mechanical, rheological and morphological properties of organoclay reinforced polyamide 6/polypropylene nanocomposites", Eur. Polym. J., 41, 687 (2005). https://doi.org/10.1016/j.eurpolymj.2004.10.041
  87. M. U. Wahit, A. Hassan, Z. A. MohdIshak and A. Abu Bakar, "The effect of polyethylene-octene elastomer on the morphological and mechanical properties of polyamide 6/ polypropylene nanocomposites", Polym. & Polym. Compos., 13, 795 (2005).
  88. A. Hassan, N. Othman, M. U. Wahit, L. J. Wei, A. R. Rachmat, and Z. A. MohdIshak, "Maleic Anhydride Polyethylene Octene Elastomer Toughened Polyamide 6/Polypropylene Nanocomposites: Mechanical and Morphological Properties", Macromol. Symp., 239, 182 (2006).
  89. Kusmono, Z. A. MohdIshak, W. S. Chow, T. Takeichi, and Rochmadi, "Influence of SEBS-g-MA on morphology, mechanical, and thermal properties of PA6/PP/organoclay nanocomposites", Eur. Polym. J., 44, 1023 (2008). https://doi.org/10.1016/j.eurpolymj.2008.01.019
  90. Kusmono, Z. A. MohdIshak, W. S. Chow, T. Takeichi and Rochmadi, "Compatibilizing effect of SEBS-g-MA on the mechanical properties of different types of OMMT filled polyamide 6/polypropylene nanocomposites", Composites Part A, 39, 1802 (2008). https://doi.org/10.1016/j.compositesa.2008.08.009
  91. Kusmono, Z. A. MohdIshak, W. S. Chow, T. Takeichi and Rochmadi, "Enhancement of properties of PA6/PP nanocomposites via organic modification and compatibilization", Express Polym. Lett., 2, 655 (2008). https://doi.org/10.3144/expresspolymlett.2008.78
  92. P. Motamedi and R. Bagheri, "Modification of nanostructure and improvement of mechanical properties of polypropylene/polyamide 6/layered silicate ternary nanocomposites through variation of processing route", Composites Part B, 85, 207 (2016). https://doi.org/10.1016/j.compositesb.2015.09.033
  93. R. J. Varley, A. M. Groth and K. H. Leong, "Preparation and characterisation of polyamide-polyimide organoclay nanocomposites", Polym. Int., 57, 618 (2008). https://doi.org/10.1002/pi.2385
  94. B. Zhang, J. S.-P. Wong, R. C.-M. Yam, and R. K.-Y. Li, "Enhanced wear performance of nylon 6/organoclay nanocomposite by blending with a thermotropic liquid crystalline polymer", Polym. Eng. Sci., 50, 900 (2010). https://doi.org/10.1002/pen.21607
  95. J. Chen, W. Wu, C. Chen, and S. He, "Toughened nylon66/nylon6 ternary nanocomposites by elastomers", J. Appl. Polym. Sci., 115, 588 (2010). https://doi.org/10.1002/app.30989
  96. S. Malmir, M. K. RazaviAghjeh, M. Hemmati, and R. Ahmadi Tehrani, "Relationship between morphology and rheology of PA/PE/Clay blend nanocomposites. I. PA matrix", J. Appl. Polym. Sci., 125, E503 (2012). https://doi.org/10.1002/app.36439
  97. V. Khoshkava, M. Dini, and H. Nazockdast, "Study on morphology and microstructure development of PA6/LDPE/organoclay nanocomposites", J. Appl. Polym. Sci., 125, E197 (2012). https://doi.org/10.1002/app.33970
  98. C. Lu, X-P. Gao, D. Yang, Q-Q. Cao, X-H. Huang, J-C. Liu, and Y-Q. Zhang, "Flame retardancy of polystyrene/nylon-6 blends with dispersion of clay at the interface", Polym. Degrad. Stab., 107, 10 (2014). https://doi.org/10.1016/j.polymdegradstab.2014.04.028
  99. X.-Q. Liu, W. Yang, B.-H. Xie, and M.-B. Yang, "Influence of multiwall carbon nanotubes on the morphology, melting, crystallization and mechanical properties of polyamide 6/acrylonitrile-butadiene-styrene blends", Mater. Des., 34, 355 (2012). https://doi.org/10.1016/j.matdes.2011.08.028
  100. S. Bose, A. R. Bhattacharyya, A. R. Kulkarni, and P. Potschke, "Electrical, rheological and morphological studies in co-continuous blends of polyamide 6 and acrylonitrile-butadienestyrene with multiwall carbon nanotubes prepared by melt blending", Compos. Sci. Technol., 69, 365 (2009). https://doi.org/10.1016/j.compscitech.2008.10.024
  101. K. Madhukar, A. V. S. Sainath, B. Sanjeeva Rao, D. Suresh Kumar, N. Bikshamaiah, Y. Srinivas, N. Mohan Babu, and B. Ashok, "Role of carboxylic acid functionalized single walled carbon nanotubes in polyamide 6/poly(methyl methacrylate) blend", Polym. Eng. Sci., 53, 397 (2013). https://doi.org/10.1002/pen.23272
  102. E. S. Ogunniran, R. Sadiku, S. S. Ray, and N. Luruli, "Morphology and Thermal Properties of Compatibilized PA12/PP Blends with Boehmite Alumina Nanofiller Inclusions", Macromol. Mater. Eng., 297, 627 (2012). https://doi.org/10.1002/mame.201100254
  103. T. Parpaite, B. Otazaghine, A. Taguet, R. Sonnier, A. S. Caro, and J. M. Lopez-Cuesta, "Incorporation of modified Stober silica nanoparticles in polystyrene/polyamide-6 blends: Coalescence inhibition and modification of the thermal degradation via controlled dispersion at the interface", Polymer, 55, 2704 (2014). https://doi.org/10.1016/j.polymer.2014.04.016
  104. S. C. Tjong and S. P. Bao, "Impact fracture toughness of polyamide-6/montmorillonite nanocomposites toughened with a maleated styrene/ethylene butylene/styrene elastomer", J. Polym. Sci. Part B: Polym. Phys., 43, 585 (2005). https://doi.org/10.1002/polb.20360
  105. R. D. Farahani and S. A. Ahmad Ramazani, "Melt preparation and investigation of properties of toughened Polyamide 66 with SEBS-g-MA and their nanocomposites", Mater. Des., 29, 105 (2008). https://doi.org/10.1016/j.matdes.2006.11.018
  106. I. Gonzalez, J. I. Eguiazabal, and J. Nazabal, "Compatibilization level effects on the structure and mechanical properties of rubber-modified polyamide-6/clay nanocomposites", J. Polym. Sci. Part B: Polym. Phys., 43, 3611 (2005). https://doi.org/10.1002/polb.20663
  107. I. Gonzalez, J. I. Eguiazabal, and J. Nazabal, "Rubber-toughened polyamide 6/clay nanocomposites", Compos. Sci. Technol., 66, 1833 (2006). https://doi.org/10.1016/j.compscitech.2005.10.008
  108. I. Gonzalez, J. I. Eguiazabal, and J. Nazabal, "Effects of the processing sequence and critical interparticle distance in PA6-clay/mSEBS nanocomposites", Eur. Polym. J., 44, 287 (2008). https://doi.org/10.1016/j.eurpolymj.2007.11.027
  109. B. Zhang, J. S.-P. Wong, D. Shi, R. C.-M. Yam, and R. K.-Y. Li, "Investigation on the mechanical performances of ternary nylon 6/SEBS elastomer/nano-$SiO_2$ hybrid composites with controlled morphology", J. Appl. Polym. Sci., 115, 469 (2010). https://doi.org/10.1002/app.30185
  110. C. Z. Liao and S. C. Tjong, "Mechanical and thermal behaviour of polyamide 6/silicon carbide nanocomposites toughened with maleated styrene-ethylene-butylene-styrene elastomer", Fatigue Fract. Eng. Mater. Struct., 35, 56 (2012). https://doi.org/10.1111/j.1460-2695.2011.01561.x
  111. Y-C. Ahn and D. R. Paul, "Rubber toughening of nylon 6 nanocomposites", Polymer, 47, 2830 (2006). https://doi.org/10.1016/j.polymer.2006.02.074
  112. F. Baldi, F. Bignotti, G. Tieghi, and T. Ricco, "Rubber toughening of polyamide 6/organoclay nanocomposites obtained by melt blending", J. Appl. Polym. Sci., 99, 3406 (2006). https://doi.org/10.1002/app.22955
  113. D. Garcia-Lopez, S. Lopez-Quintana, I. GobernadoMitre, J. C. Merino, and J. M. Pastor, "Study of melt compounding conditions and characterization of polyamide 6/metallocene ethylene-polypropylene-diene copolymer/maleated ethylene-polypropylene-diene copolymer blends reinforced with layered silicates", Polym. Eng. Sci., 47, 1033 (2007). https://doi.org/10.1002/pen.20782
  114. K. Wang, C. Wang, J. Li, J. Su, Q. Zhang, R. Du, and Q. Fu, "Effects of clay on phase morphology and mechanical properties in polyamide 6/EPDM-g-MA/organoclay ternary nanocomposites", Polymer, 48, 2144 (2007). https://doi.org/10.1016/j.polymer.2007.01.070
  115. L. Zhang, C. Wan, and Y. Zhang, "Investigation on morphology and mechanical properties of polyamide 6/maleated ethylene-propylene-diene rubber/organoclay composites", Polym. Eng. Sci., 49, 209 (2009). https://doi.org/10.1002/pen.21201
  116. R. Gallego, D. Garcia-Lopez, J. C. Merino, and J. M. Pastor, "How do the shape of clay and type of modifier affect properties of polymer blends?", J. Appl. Polym. Sci., 127, 3009 (2013). https://doi.org/10.1002/app.37979
  117. W. Dong, X. Zhang, Y. Liu, Q. Wang, H. Gui, J. Gao, Z. Song, J. Lai, F. Huang, and J. Qiao, "Flame retardant nanocomposites of polyamide 6/clay/silicone rubber with high toughness and good flowability", Polymer, 47, 6874 (2006). https://doi.org/10.1016/j.polymer.2006.07.038
  118. G. Prasath Balamurugan and S. N. Maiti, "Effects of nanotalc inclusion on mechanical, microstructural, melt shear rheological, and crystallization behavior of polyamide 6-based binary and ternary nanocomposites", Polym. Eng. Sci., 50, 1978 (2010). https://doi.org/10.1002/pen.21724
  119. Y. Yoo, R. R. Tiwari, Y-T. Yoo, and D. R. Paul, "Effect of organoclay structure and mixing protocol on the toughening of amorphous polyamide/elastomer blends", Polymer, 51, 4907 (2010). https://doi.org/10.1016/j.polymer.2010.08.036
  120. A. E. Jahromi, A. Arefazar, O. M. Jazani, M. G. Sari, M. R. Saeb, and M. Salehil, "Taguchi-based analysis of polyamide 6/acrylonitrile-butadiene rubber/nanoclay nanocomposites: The role of processing variables", J. Appl. Polym. Sci., 130, 820 (2013). https://doi.org/10.1002/app.39191
  121. L. Zhou, Y. Wan, X. Chen, S. Sun, and C. Zhou, "Toughening of PA6 nanocomposites by reactive acrylonitrile-butadiene-styrene core-shell rubber particles", Polym. Compos., 35, 864 (2014). https://doi.org/10.1002/pc.22730
  122. Plastics News, May 7, 9, 2012.
  123. Plastics News, June 25, 6, 2012.
  124. C. Thellen, S. Schirmer, J. A. Ratto, B. Finnigan, and D. Schmidt, "Co-extrusion of multilayer poly(m-xylylene adipimide) nanocomposite films for high oxygen barrier packaging applications", J. Membr. Sci., 340, 45 (2009). https://doi.org/10.1016/j.memsci.2009.05.011
  125. M. Fereydoon, S. H. Tabatabaei, and A. Ajji, "Rheological, crystal structure, barrier, and mechanical properties of PA6 and MXD6 nanocomposite films", Polym. Eng. Sci., 54, 2617 (2014). https://doi.org/10.1002/pen.23813
  126. D. Joachimi, H. Schlte, W. Littek, and J. Kadelka, "Highly viscous polyamide for use in extrusion blow molding", U.S.Patent 20030092822 (2003).
  127. R. van Mullekom, D. Joachimi, A. Karbach, P. Persigehl, and M. De Bock, "Molding compositions and their use", U.S.Patent 20050043443 (2005).
  128. N. Sun and W. W. Zhang, "Flame resistant polyamide resin composition and articles comrpising the same", WO Patent 2011126794 (2012).
  129. K. J. Kim, S. M. Lee, and J. H. Hwang, "Polyamide 66 resin composition reinforced with glass fiber for high tensile strength and manufacturing method thereof", KR Patent 101602814B1 (2016).
  130. Y. M. Park, S. H. Kim, W. Y. Choi, S. D. Zu, and H. S. Chang, "Resin Composition of Polyamide for automobile radiator", KR Patent 100844728 (2008).
  131. D. S. Kim, H. S. Chang, and B. H. Oh, "Polyamide resin composition", KR Patent 100931151 (2009).
  132. S. H. Kim, S. D. Zu, Y. S. Kim, S. C. Park, C. W. Jeong, H. S. Chang, and B. H. Oh, "Resin composition of polyamide with high impact and alcohol resistances", KR Patent 100921052 (2009).
  133. J. G. Jegal, "State and prospects of bioplastics", Korea Soc. Ind. Eng. Chem., 15, 4 (2012).
  134. D. H. Lim, K. J. Bae, D. S. Hong, I. K. Kwon, and J. W. Lee, "The market analysis and perspectives of bioplastics", Biomater. Res., 15, 66 (2011).
  135. J. G. Han, "Bio-plastic technology and market trends", The Monthly Packaging World, 217, 57 (2011).
  136. C. H. Hong, D. S. Han, and B. U. Nam, "The present situation and prediction of biomass-based nylon", Polym. Sci. Technol., 21, 321 (2010).
  137. H. Y. Kim, J. S. Goh, M. H. Ryu, D. S. Kim, B. K. Song, S. H. Lee, S. J. Park, and J. Jegal, "Preparation and Characterization of Nylon 6, 5 Copolymers from $\varepsilon$-Caprolactam and 2-Piperidone", Polymer(Korea), 38, 31 (2014).
  138. Z. J. Reitman, B. D. Choi, I. Spasojevic, D. D. Bigner, J. H. Sampson, and H. Yan, "Enzyme redesign guided by cancerderived IDH1 mutations", Nat. Chem. Biol., 8, 887 (2012). https://doi.org/10.1038/nchembio.1065
  139. 비즈오션, "경량화 소재 및 적용 기술개발 동향과 전망", May 25, 2015.
  140. 한국경제, 13, 2015.03.17
  141. Azo materials, December 15, 2009.
  142. Kunststoffe international, 10, 2014.
  143. Plastics News, January 16, 2014.
  144. Lanxess, September 5, 2011.
  145. Lanxess, October 15, 2014.
  146. Compounding world, January 2012.
  147. Automotive News Europe, October 9, 2014.

피인용 문헌

  1. Comparing Crystallization Kinetics between Polyamide 6 and Polyketone via Chip-Calorimeter Measurement pp.10221352, 2017, https://doi.org/10.1002/macp.201700385