DOI QR코드

DOI QR Code

Fabrication of PMMA-HfOx Organic-Inorganic Hybrid Resistive Switching Memory

PMMA-HfOx 유-무기 하이브리드 저항변화 메모리 제작

  • Baek, Il-Jin (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Cho, Won-Ju (Department of Electronic Materials Engineering, Kwangwoon University)
  • 백일진 (광운대학교 전자재료공학과) ;
  • 조원주 (광운대학교 전자재료공학과)
  • Received : 2016.01.28
  • Accepted : 2016.02.23
  • Published : 2016.03.01

Abstract

In this study, we developed the solution-processed PMMA-$HfO_x$ hybrid ReRAM devices to overcome the respective drawbacks of organic and inorganic materials. The performances of PMMA-$HfO_x$ hybrid ReRAM were compared to those of PMMA- and $HfO_x$-based ReRAMs. Bipolar resistive switching behavior was observed from these ReRAMs. The PMMA-$HfO_x$ hybrid ReRAMs showed a larger operation voltage margin and memory window than PMMA-based and $HfO_x$-based ReRAMs. The reliability and electrical instability of ReRAMs were remarkably improved by blending the $HfO_x$ into PMMA. An Ohmic conduction path was commonly generated in the LRS (low resistance state). In HRS (high resistance state), the PMMA-based ReRAM showed SCLC (space charge limited conduction). the PMMA-$HfO_x$ hybrid ReRAM and $HfO_x$-based ReRAM revealed the Pool-Frenkel conduction. As a result of flexibility test, serious defects were generated in $HfO_x$ film deposited on PI (polyimide) substrate. On the other hand, the PMMA and PMMA-$HfO_x$ films showed an excellent flexibility without defect generation.

Keywords

ReRAM;Organic-Inorganic;Hybrid;Solution-process;Flexible electronics

Acknowledgement

Supported by : 한국연구재단

References

  1. Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, and M. Liu, Adv. Mater., 24, 1844 (2012). [DOI: http://dx.doi.org/10.1002/adma.201104104] https://doi.org/10.1002/adma.201104104
  2. S. Kim, H. Moon, D. Gupta, S. Yoo and Y. K. Choi, IEEE Trans. Electron. Dev., 56, 4 (2009). [DOI: http://dx.doi.org/10.1109/TIE.2008.2008757] https://doi.org/10.1109/TIE.2008.2008757
  3. C. D. Müller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, and K. Meerholz, Nature, 421, 829 (2003). [DOI: http://dx.doi.org/10.1038/nature01390] https://doi.org/10.1038/nature01390
  4. G. Dennler and N. S. Sariciftci, Proceedings of the IEEE, 93, 1429 (2005). [DOI: http://dx.doi.org/10.1109/JPROC.2005.851491] https://doi.org/10.1109/JPROC.2005.851491
  5. G. Darlinski, U. Bottger, and R. Waser, J. Appl. Phys., 97, 093708 (2005). [DOI: http://scitation.aip.org/content/aip/journal/jap/97/9/10.1063/1.1888046] https://doi.org/10.1063/1.1888046
  6. M. Mizukami, N. Hirohata, T. Iseki, K. Ohtawara, T. Tada, S. Yagyu, T. Abe, T. Suzuki, Y. Fujisaki, Y. Inoue, S. Tokito, and T. Kurita, IEEE Electron Device Lett., 27, 249 (2006). [DOI: http://dx.doi.org/10.1109/LED.2006.870413] https://doi.org/10.1109/LED.2006.870413
  7. J. Mangalam, S. Agarwal, A. N. Resmi, M. Sundararajan, and K. B. Jinesh, Organic Electronics, 29, 33 (2016). [DOI: http://dx.doi.org/10.1016/j.orgel.2015.11.017] https://doi.org/10.1016/j.orgel.2015.11.017
  8. R. Huang, Y. Cai, Y. Liu, W. Bai, Y. Kuang, and T. Wang, Circuits and Systems, 838 (2014).
  9. Z. Fan, D. Wang, J. G. Lu, X. Mo, C. Lou, Y. Yao, and G. Chen, In Nanotechnology, IEEE-NANO., 2, 588 (2003). [DOI: http://dx.doi.org/10.1109/NANO.2003.1230979] https://doi.org/10.1109/NANO.2003.1230979
  10. H. T. Lin, Z. Pei, and Y. J. Chan, Electron Device Letters, IEEE, 28, 569 (2007). [DOI: http://dx.doi.org/10.1109/LED.2007.899668] https://doi.org/10.1109/LED.2007.899668
  11. D. Basak, S. Karan, and B. Mallik, Solid State Commun. 141, 483 (2007). [DOI: http://dx.doi.org/10.1016/j.ssc.2006.12.014] https://doi.org/10.1016/j.ssc.2006.12.014
  12. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F T. Chen, and M. J. Tsai, Proceeding of the IEEE, 100, 1951 (2012). [DOI: http://dx.doi.org/10.1109/JPROC.2012.2190369] https://doi.org/10.1109/JPROC.2012.2190369
  13. E. J. Yoo, M. Lyu, J. H. Yun, C. J. Kang, Y. J. Choi, and L. Wang, Advanced Materials, 27, 6170 (2015) [DOI: http://dx.doi.org/10.1002/adma.201502889] https://doi.org/10.1002/adma.201502889
  14. H. W. Shin, J. H. Park, H. Y. Chung, K. H. Kim, H. D. Kim, and T. G. Kim, Applied Physics Express, 7, 024202 (2014). [DOI: http://dx.doi.org/10.7567/APEX.7.024202] https://doi.org/10.7567/APEX.7.024202
  15. I. Hwang, M. J. Lee, G. H. Buh, J. Bae, J. Choi, J. S. Kim, S. Hong, Y. S. Kim, I. S. Byun, S. W. Lee, S. E. Ahn, B. S. Kang, S. O. Kang, B. H. Park, Appl. Phys. Lett. 97, 052106 (2010). [DOI: http://dx.doi.org/10.1063/1.3477953] https://doi.org/10.1063/1.3477953
  16. H. Jo, J. A. Lim, H .J. Chang and Y. S. Kim, Macromol. Rapid Commun., 34, 355 (2013). [DOI: http://dx.doi.org/10.1002/marc.201200614] https://doi.org/10.1002/marc.201200614
  17. A. Ramadoss, K. Krishnamoorthy and S. J. Kim, Appl. Phy. Exp., 5, 085803 (2012). [DOI: http://dx.doi.org/10.1143/APEX.5.085803] https://doi.org/10.1143/APEX.5.085803