Fabrication of PMMA-HfOx Organic-Inorganic Hybrid Resistive Switching Memory

PMMA-HfOx 유-무기 하이브리드 저항변화 메모리 제작

  • Baek, Il-Jin (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Cho, Won-Ju (Department of Electronic Materials Engineering, Kwangwoon University)
  • 백일진 (광운대학교 전자재료공학과) ;
  • 조원주 (광운대학교 전자재료공학과)
  • Received : 2016.01.28
  • Accepted : 2016.02.23
  • Published : 2016.03.01


In this study, we developed the solution-processed PMMA-$HfO_x$ hybrid ReRAM devices to overcome the respective drawbacks of organic and inorganic materials. The performances of PMMA-$HfO_x$ hybrid ReRAM were compared to those of PMMA- and $HfO_x$-based ReRAMs. Bipolar resistive switching behavior was observed from these ReRAMs. The PMMA-$HfO_x$ hybrid ReRAMs showed a larger operation voltage margin and memory window than PMMA-based and $HfO_x$-based ReRAMs. The reliability and electrical instability of ReRAMs were remarkably improved by blending the $HfO_x$ into PMMA. An Ohmic conduction path was commonly generated in the LRS (low resistance state). In HRS (high resistance state), the PMMA-based ReRAM showed SCLC (space charge limited conduction). the PMMA-$HfO_x$ hybrid ReRAM and $HfO_x$-based ReRAM revealed the Pool-Frenkel conduction. As a result of flexibility test, serious defects were generated in $HfO_x$ film deposited on PI (polyimide) substrate. On the other hand, the PMMA and PMMA-$HfO_x$ films showed an excellent flexibility without defect generation.


ReRAM;Organic-Inorganic;Hybrid;Solution-process;Flexible electronics


Supported by : 한국연구재단


  1. Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, and M. Liu, Adv. Mater., 24, 1844 (2012). [DOI:]
  2. S. Kim, H. Moon, D. Gupta, S. Yoo and Y. K. Choi, IEEE Trans. Electron. Dev., 56, 4 (2009). [DOI:]
  3. C. D. Müller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, and K. Meerholz, Nature, 421, 829 (2003). [DOI:]
  4. G. Dennler and N. S. Sariciftci, Proceedings of the IEEE, 93, 1429 (2005). [DOI:]
  5. G. Darlinski, U. Bottger, and R. Waser, J. Appl. Phys., 97, 093708 (2005). [DOI:]
  6. M. Mizukami, N. Hirohata, T. Iseki, K. Ohtawara, T. Tada, S. Yagyu, T. Abe, T. Suzuki, Y. Fujisaki, Y. Inoue, S. Tokito, and T. Kurita, IEEE Electron Device Lett., 27, 249 (2006). [DOI:]
  7. J. Mangalam, S. Agarwal, A. N. Resmi, M. Sundararajan, and K. B. Jinesh, Organic Electronics, 29, 33 (2016). [DOI:]
  8. R. Huang, Y. Cai, Y. Liu, W. Bai, Y. Kuang, and T. Wang, Circuits and Systems, 838 (2014).
  9. Z. Fan, D. Wang, J. G. Lu, X. Mo, C. Lou, Y. Yao, and G. Chen, In Nanotechnology, IEEE-NANO., 2, 588 (2003). [DOI:]
  10. H. T. Lin, Z. Pei, and Y. J. Chan, Electron Device Letters, IEEE, 28, 569 (2007). [DOI:]
  11. D. Basak, S. Karan, and B. Mallik, Solid State Commun. 141, 483 (2007). [DOI:]
  12. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F T. Chen, and M. J. Tsai, Proceeding of the IEEE, 100, 1951 (2012). [DOI:]
  13. E. J. Yoo, M. Lyu, J. H. Yun, C. J. Kang, Y. J. Choi, and L. Wang, Advanced Materials, 27, 6170 (2015) [DOI:]
  14. H. W. Shin, J. H. Park, H. Y. Chung, K. H. Kim, H. D. Kim, and T. G. Kim, Applied Physics Express, 7, 024202 (2014). [DOI:]
  15. I. Hwang, M. J. Lee, G. H. Buh, J. Bae, J. Choi, J. S. Kim, S. Hong, Y. S. Kim, I. S. Byun, S. W. Lee, S. E. Ahn, B. S. Kang, S. O. Kang, B. H. Park, Appl. Phys. Lett. 97, 052106 (2010). [DOI:]
  16. H. Jo, J. A. Lim, H .J. Chang and Y. S. Kim, Macromol. Rapid Commun., 34, 355 (2013). [DOI:]
  17. A. Ramadoss, K. Krishnamoorthy and S. J. Kim, Appl. Phy. Exp., 5, 085803 (2012). [DOI:]