Characterization of Hot Electron Transistors Using Graphene at Base

그래핀을 베이스로 사용한 열전자 트랜지스터의 특성

Lee, Hyung Gyoo;Kim, Sung Jin;Kang, Il-Suk;Lee, Gi Sung;Kim, Ki Nam;Koh, Jin Won

  • Received : 2016.02.22
  • Accepted : 2016.02.23
  • Published : 2016.03.01


Graphene has a monolayer crystal structure formed with C-atoms and has been used as a base layer of HETs (hot electron transistors). Graphene HETs have exhibited the operation at THz frequencies and higher current on/off ratio than that of Graphene FETs. In this article, we report on the preliminary results of current characteristics from the HETs which are fabricated utilizing highly doped Si collector, graphene base, and 5 nm thin $Al_2O_3$ tunnel layers between the base and Ti emitter. We have observed E-B forward currents are inherited to tunneling through $Al_2O_3$ layers, but have not noticed the Schottky barrier blocking effect on B-C forward current at the base/collector interface. At the common-emitter configuration, under a constant $V_{BE}$ between 0~1.2V, $I_C$ has increased linearly with $V_{CE}$ for $V_{CE}$ < $V_{BE}$ indicating the saturation region. As the $V_{CE}$ increases further, a plateau of $I_C$ vs. $V_{CE}$ has appeared slightly at $V_{CE}{\simeq}V_{BE}$, denoting forward-active region. With further increase of $V_{CE}$, $I_C$ has kept increasing probably due to tunneling through thin Schottky barrier between B/C. Thus the current on/off ration has exhibited to be 50. To improve hot electron effects, we propose the usage of low doped Si substrate, insertion of barrier layer between B/C, or substrates with low electron affinity.


Graphene;Hot electron transistor;Tunneling;Schottky barrier


  1. A. K. Geim and K. S. Novoselov, Nature Materials, 6, 183 (2007). [DOI:]
  2. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N.M.R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, L. A. Ponomarenko1, Science, 335, 947 (2012). [DOI:]
  3. A. J. Hong, E. B. Song, H. S. Yu, M. J. Allen, J. Y. Kim, J. D. Fowler, J. K. Wassei, Y. J. Park, Y. Wang, J. Zou, R. B. Kaner, B. H. Weiller, and K. L. Wang, ACS Nano, 5, 7812 (2011). [DOI:]
  4. C. Zeng, E. B. Song, M. Wang, S. J. Lee, C. M. TorresJr, J. Tang, B. H. Weiller, and Kang L. Wang, Nano Lett., 13, 2370 (2013). [DOI:]
  5. S. Vaziri, G. Lupina, C. Henkel, A. D. Smith, M. Ostling, J. Dabrowski, G. Lippert, W. Mehr, and M. C. Lemme, Nano Lett., 13, 1435 (2013). [DOI:]
  6. F. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, Nano Lett., 10, 715 (2010). [DOI:]
  7. S. K. Bae, H. K. Kim, Y. B. Lee, X. Xu, J. S, Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, Nature nanotechnology, 5, 574 (2010). [DOI:]
  8. B. D. Kong, Z. Jin, and K. W. Kim, Phys. Rev. Appl., 2, 054006 (2014). [DOI:]

Cited by

  1. Device model for pixelless infrared image up-converters based on polycrystalline graphene heterostructures vol.123, pp.1, 2018,


Supported by : 한국연구재단