DOI QR코드

DOI QR Code

Optical Compensation of IPS-LCD for Symmetric-High-Contrast at Off-Axis Oblique View

측면시야각에서의 대칭적 명암대비비 향상을 위한 IPS-LCD 광학보상

Kim, Tae-Hyeon;Kim, Bong-Sik;Park, Woo-Sang
김태현;김봉식;박우상

  • Received : 2016.02.23
  • Accepted : 2016.02.24
  • Published : 2016.03.01

Abstract

In this study, we proposed an optical compensation method to improve the symmetricity of contrast ratio for wide viewing angle IPS (in-plane switching) LCD. First, the phase retardation depending on the thickness of compensation film is calculated, and then the phase change is presented at the $Poincar{\acute{e}}$ sphere. The phase retardation and the polarization state of the light passing through the optical elements are caculated by using the EJMM (extended Jones matrix method). In addition, the transmittance and the contrast countour are also calculated by using the Berremann's $4{\times}4$ matrix method. The simulation is carried out for a IPS LC cell with positive A/C/A compensation film. From the standard deviation of the contrast ratio, we confirmed the symmetricity at each viewing angle is inversely proportional to the standard deviation and calculated the optimum design condition of the uniaxial compensation film for the IPS LCD.

Keywords

Liquid crystal display;In-plane switching;Viewing angle;Contrast ratio;Compensation film

References

  1. M. Oh-E and K. Kondo, Appl. Phys. Lett., 67, 3895 (1995). [DOI: http://dx.doi.org/10.1063/1.115309] https://doi.org/10.1063/1.115309
  2. R. Herke, S. Jamal, and J. Kelly, J. Soc. Inf. Disp., 3, 9 (1995). [DOI: http://dx.doi.org/10.1889/1.1984935] https://doi.org/10.1889/1.1984935
  3. R. A. Soref, J. Appl. Phys., 45, 5466 (1974). [DOI: http://dx.doi.org/10.1063/1.1663263] https://doi.org/10.1063/1.1663263
  4. M. Oh-E, M. Ohta, S. Aratani, and K. Kondo, Proc. 15th Int. Display Research Conf. (Asia Display, 1995), p. 577.
  5. Q. Hong, T. X.Wu, X. Zhu, R. Lu, and S. -T.Wu, Appl. Phys. Lett., 86, 121107 (2005). [DOI: http://dx.doi.org/10.1063/1.1887815] https://doi.org/10.1063/1.1887815
  6. X. Zhu and S.-T. Wu, SID Int. Symp. Digest Tech., 36, 1164 (2005). [DOI: http://dx.doi.org/10.1889/1.2036208] https://doi.org/10.1889/1.2036208
  7. X. Zhu, Z. Ge, and S.-T. Wu, J. Disp. Technol., 2, 2 (2006). [DOI: http://dx.doi.org/10.1109/JDT.2005.863599] https://doi.org/10.1109/JDT.2005.863599
  8. Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, Jpn. J. Appl. Phys., 37, 4822 (1998). [DOI: http://dx.doi.org/10.1143/JJAP.37.4822] https://doi.org/10.1143/JJAP.37.4822
  9. A. Lien, Liq. Cryst., 22, 171 (1997). [DOI: http://dx.doi.org/10.1080/026782997209531] https://doi.org/10.1080/026782997209531
  10. A. Lien, Appl. Phys. Lett., 57, 2767 (1990). [DOI: http://dx.doi.org/10.1063/1.103781] https://doi.org/10.1063/1.103781
  11. J. E. Bigelow and R. A. Kashnow, Appl. Opt., 16, 2090 (1977). [DOI: http://dx.doi.org/10.1063/1.103781] https://doi.org/10.1364/AO.16.002090
  12. D. W. Berreman, J. Opt. Soc. Am., 62, 502 (1972). [DOI: http://dx.doi.org/10.1364/JOSA.62.000502] https://doi.org/10.1364/JOSA.62.000502
  13. K. Vermeirsch, A. De Meyere, J. Fornier, and H. De Vleeschouwer, Appl. Opt., 38, 2775 (1999). [DOI: http://dx.doi.org/10.1364/AO.38.002775] https://doi.org/10.1364/AO.38.002775
  14. M. G. Robinson, J. Chen, and G. D. Sharp, Polarization Engineering for LCD Projection (John Wiley & Sons, New York, 2005) [DOI: http://dx.doi.org/10.1002/0470871075]
  15. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, New York, 1999), p 136.

Acknowledgement

Supported by : 산업통상자원부