Optical Properties of MgMoO4:Dy3+,Eu3+ Phosphors Prepared with Different Eu3+ Molar Ratios

Eu3+ 이온의 몰 비 변화에 따른 MgMoO4:Dy3+,Eu3+ 형광체의 광학 특성

  • Kim, Jung Dae (School of Electrical Engineering, Korea University) ;
  • Cho, Shinho (Department of Materials Science and Engineering, Center for Green Fusion Technology, Silla University)
  • 김정대 (고려대학교 전기전자공학부) ;
  • 조신호 (신라대학교 신소재공학과 녹색융합기술센터)
  • Received : 2016.01.18
  • Accepted : 2016.02.22
  • Published : 2016.03.01


The effects of $Eu^{3+}$ doping on the structural, morphological, and optical properties of $MgMoO_4:Dy^{3+},Eu^{3+}$ phosphors prepared by solid-state reaction technique were investigated. XRD patterns exhibited that all the synthesized phosphors showed a monoclinic system with a dominant (220) diffraction peak, irrespective of the content of $Eu^{3+}$ ions. The surface morphology of $MgMoO_4:Dy^{3+},Eu^{3+}$ phosphors was studied using scanning electron microscopy and the grains showed a tendency to agglomerate as the content of $Eu^{3+}$ ions increased. The excitation spectra of the phosphor powders were composed of a strong charge transfer band centered at 294 nm in the range of 230~340 nm and two intense peaks at 354 and 389 nm, respectively, arising from the $^6H_{15/2}{\rightarrow}^6P_{7/2}$ and $^6H_{15/2}{\rightarrow}^4M_{21/2}$ transitions of $Dy^{3+}$ ions. The emission spectra of the $Mg_{0.85}MoO_4$:10 mol% $Dy^{3+}$ phosphors without incorporating $Eu^{3+}$ ions revealed a strong yellow band centered at 573 nm resulting from the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of $Dy^{3+}$. As the content of $Eu^{3+}$ was increased, the intensity of the yellow emission was gradually decreased, while that of red emission band located at 614 nm began to appear, approached a maximum value at 10 mol%, and then decreased at 15 mol% of $Eu^{3+}$. These results indicated that white light emission could be achieved by controlling the contents of the $Dy^{3+}$ and $Eu^{3+}$ ions incorporated into the $MgMoO_4$ host crystal.




Supported by : 신라대학교


  1. L. Y. Zhou, J. S. Wei, L. H. Yi, F. Z. Gong, J. L. Huang, and W. Wang, Mater. Res. Bull., 44, 1411 (2009). [DOI:]
  2. P. Du and J. S. Yu, Mater. Res. Bull., 70, 553 (2015). [DOI:]
  3. D. A. Spasskii, V. N. Kolobanov, V. V. Mikhailin, L. Y. Berezovskaya, L. I. Ivleva, and I. S. Voronina, Opt. Spectrosc., 106, 556 (2009). [DOI:]
  4. T. S. Atabaev, M. Kurisu, K. Konishi, and N. H. Hong, Am. J. Nanosci. Nanotechno., 2, 13 (2014). [DOI:]
  5. P.F.S. Pereira, I. C. Nogueira, E. Longo, E. J. Nassar, I.L.V. Rosa, and L. S. Cavalcante, J. Rare Earth., 33, 113 (2015). [DOI:]
  6. H. Lai, A. Bao, Y. Yang, W. Xu, Y. Tao, and H. Yang, J. Lumin., 128, 521 (2008). [DOI:]
  7. J. A. Wani, N. S. Dhoble, N. S. Kokode, and S. J. Dhoble, Adv. Matt. Lett., 5, 459 (2014).
  8. T. S. Atabaev, J. H. Lee, D. W. Han, Y. H. Hwang, and H. K. Kim, J. Biomed. Mat. Res. A, 100, 2287 (2012).
  9. J. L. Cai, R. Y. Li, C. J. Zhao, S. L. Tie, and X. Wan, J. Y. Shen, Opt. Mater., 34, 1112 (2012). [DOI:]
  10. B. C. Joshi and C. C. Dhondiyal, Indian J. Pure Ap. Phy., 43, 918 (2005).
  11. X. Li, L. Guan, M. Sun, H. Liu, Z. Yang, Q. Guo, and G. Fu, J. Lumin., 131, 1022 (2011). [DOI:]
  12. Z. Yan, L. Chunhua, N. Yaru, Z. Qitu, and X. Zhongzi, J. Rare Earth., 25, 99 (2007). [DOI:]
  13. Y. Zhang, W. Gong, J. Yu, H. Pang, Q. Song, and G. Ning, RSC Adv., 5, 62527 (2015). [DOI:]
  14. S. Dutta, S. Som, and S. K. Sharma, Dalton Trans., 42, 9654 (2013). [DOI:]
  15. W. T. Hong, J. H. Lee, H. I. Jang, and H. K. Yang, J. Korean Phys. Soc., 66, 1895 (2015). [DOI:]
  16. M. Chowdhury and S. K. Sharma, RCS Adv., 5, 51102 (2015).
  17. W. B. Dai, J. L. Wang, Y. Y. Ma, and Q. Y. Zhang, ECS J. Solid State Sci. Technol., 3, R251 (2014). [DOI:]