DOI QR코드

DOI QR Code

실험 설계에서 나타난 소집단 논변활동 탐색: 활동에 대한 인식적 목표와 인식적 이해를 중심으로

Exploring Small Group Argumentation Shown in Designing an Experiment: Focusing on Students' Epistemic Goals and Epistemic Considerations for Activities

  • 투고 : 2015.11.26
  • 심사 : 2016.02.17
  • 발행 : 2016.02.29

초록

본 연구는 탐구 과제에서 드러나는 학생들의 인식적 목표와 인식적 이해의 전환을 확인하고, 이러한 전환이 논변활동에 어떠한 영향을 미치는지를 알아보고자 하였다. 중학교 1학년 37명의 학생들이 연구에 참여하였고, 학생들의 인식론이 맥락에 따라 변한 1개 소집단을 선정하여 광합성 실험설계를 구성하는 논의 과정을 분석하였다. 학생들의 발화 및 행동을 통해 그들의 인식적 목표와 인식적 이해를 확인하였고 학생들의 실험설계 과정 및 결과를 분석하였다. 연구 결과, 학생들은 실험설계를 구성할 때 '과학적 의미 형성'이라는 인식적 목표에 초점을 두어 '이 실험이 어떻게 광합성에 이산화탄소가 필요한지를 알아볼 수 있는지'를 '과학 이론, 자료에 대한 자신의 해석에 기반을 두어 정당화'하였으며, 자기 자신을 '지식의 구성자'로 바라봄으로써 능동적으로 실험을 구성하였다. 그러나 다른 실험에 대해서는 '권위에 기반한 반박'을 보였으며 상대방 실험을 인정하지 않고 반박만을 제기하는 '평가자'로서의 태도를 보임으로써, 반박 과정에서 제기된 의견을 고려한 수정은 없었다. 하나의 실험을 선정하는 과정에서 인식적 목표는 '이기는 것'으로 전환되었고, '이런 실험이 좋다'라는 지식의 본성, '상대방을 이해시키기 위한 정당화를 할 필요가 없다' 혹은 '권위에 기반하여 정당화하는 것'이라는 정당화, '경쟁자'라는 청중에 대한 인식을 보였다. 이에 따라 학생들은 서로의 실험설계가 갖는 의미를 깊이 있게 탐색하지 못하였고 상대방 주장의 제한점만을 공격하여 인지적, 정서적 갈등 상황이 지속되었다. 시간 제한으로 인해 선택된 A의 실험설계를 정교화하는 과정에서 인식적 목표는 '과학적 의미 형성'으로 다시 전환되었고, '어떻게 그 실험이 과학적으로 타당한지'를 되짚어 보고 '납득할 만한 정당화가 이루어져야 한다'는 필요성을 바탕으로 과학적으로 옳은 정당화를 보였으며 학생들은 '협력자'의 관계에 놓였다. 이에 따라 구성원 모두가 의견을 제안하고 정당화하고 평가를 하는 생산적인 논변활동을 통해 발전된 소집단결과를 완성시켰다. 본 연구는 과학 수업에서 생산적인 논변활동을 지원하는 인식적 목표와 인식적 이해에 대한 기초 정보를 제공할 것으로 기대된다.

키워드

인식적 목표;인식적 이해;인식적 실행;소집단 논변활동

참고문헌

  1. Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science Education, 82(4), 417-436. https://doi.org/10.1002/(SICI)1098-237X(199807)82:4<417::AID-SCE1>3.0.CO;2-E
  2. Bell, R. L., Blair, L. M., Crawford, B. A., & Lederman, N. G. (2003). Just do it? Impact of science apprenticeship program on high school students'understanding of the nature of science and scientific inquiry. Journal of Research in Science Teaching, 40(5), 487-509. https://doi.org/10.1002/tea.10086
  3. Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts:Designing for learning from the web with KIE. International Journal of Science Education, 22(8), 797-817. https://doi.org/10.1080/095006900412284
  4. Berland, L. K., & Lee, V. R. (2012). In pursuit of consensus: Disagreement and legitimization during small-group argumentation. International Journal of Science Education, 34(12), 1857-1882. https://doi.org/10.1080/09500693.2011.645086
  5. Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26-55. https://doi.org/10.1002/sce.20286
  6. Berland, L. K, & Reiser, B. J. (2011). Classroom communities' adaptations of the practice of scientific argumentation. Science Education, 95(2), 191-216. https://doi.org/10.1002/sce.20420
  7. Berland, L. K., Schwarz, C. V., Krist, C., Kenyon, L., Lo, A. S., & Reiser, B. J. (2015). Epistemologies in practice: Making scientific practices meaningful for students. Journal of Research in Science Teaching. DOI: 10.1002/tea.21257 https://doi.org/10.1002/tea.21257
  8. Bing, T. J., & Redish, E. F. (2009). Analyzing problem solving using math in physics: Epistemological framing via warrants. Physical Review Special Topics-Physics Education Research, 5(2), 020108. https://doi.org/10.1103/PhysRevSTPER.5.020108
  9. Brown, A. L., & Campione, J. C. (1996). Psychological theory and the design of innovative learning environments: On procedures, principles, and systems. In L. Schauble & R. Glaser (Eds.), Innovations in learning: New environments for education (pp. 289-325). Mahwah, NJ: Erlbaum.
  10. Chin, C., & Brown, D. E. (2000). Learning in science: A comparison of deep and surface approaches. Journal of research in science teaching, 37(2), 109-138. https://doi.org/10.1002/(SICI)1098-2736(200002)37:2<109::AID-TEA3>3.0.CO;2-7
  11. Chin, C., & Brown, D. E. (2002). Student-generated questions: A meaningful aspect of learning in science. International Journal of Science Education, 24(5), 521-549. https://doi.org/10.1080/09500690110095249
  12. Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175-218. https://doi.org/10.1002/sce.10001
  13. Cho, H., Chang, J., & Kim, H. (2013). Epistemic level in middle school students' small-group argumentation using first-hand or second-hand data. Journal of the Korean Association Research in Science Education, 33(2), 486-500. https://doi.org/10.14697/jkase.2013.33.2.486
  14. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  15. Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of research in education, 32(1), 268-291. https://doi.org/10.3102/0091732X07309371
  16. Duschl, R. A., Ellenbogan, E., &Erduran, S. (1999). Promoting argumentation in middle school classrooms: A project SEPIA evaluation. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Boston, MA.
  17. Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38, 39-72. https://doi.org/10.1080/03057260208560187
  18. Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (Eds.). (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academies Press.
  19. Entwistle, N. J., & Ramsden, P. (1982). Understanding Student Learning, London: Croom Helms: NY: Nichols Publishing Co.
  20. Felton, M., Garcia-Mila, M., & Gilabert, S. (2009). Deliberation versus dispute: The impact of argumentative discourse goals on learning and reasoning in the science classroom. Informal Logic, 29, 417-446. https://doi.org/10.22329/il.v29i4.2907
  21. Ford, M. J., & Forman, E. A. (2006). Redefining disciplinary learning in classroom contexts. Review of research in education, 1-32.
  22. Garcia-Mila, M. E. R. C. E., Gilabert, S., Erduran, S., & Felton, M. (2013). The effect of argumentative task goal on the quality of argumentative discourse. Science Education, 97(4), 497-523. https://doi.org/10.1002/sce.21057
  23. Gilabert, S., Garcia-Mila, M., & Felton, M. K. (2013). The effect of task instructions on students' use of repetition in argumentative discourse. International Journal of Science Education, 35(17), 2857-2878. https://doi.org/10.1080/09500693.2012.663191
  24. Goffman, E. (1974). Frame analysis: An essay on the organization of experience, Cambridge, MA: Harvard University Press.
  25. Hammer, D., & Elby, A. (2002). On the form of a personal epistemology. In B. K. Hofer, and P. R. Pintrich (Eds.), Personal Epistemology: The Psychology of Beliefs About Knowledge and Knowing (pp. 169-190). Erlbaum, Mahwah, NJ.
  26. Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. P. Mestre (Ed.), Transfer of Learning from a modern multidisciplinary perspective, (pp. 89-120). Information Age Publishing.
  27. Hatano, G., & Inagaki, K. (1991). Sharing cognition through collective comprehension activity. In L. Resnick, J. M. Levine, & S. D. Teasley (Eds.), Perspectives on socially shared cognition (pp. 331-348). Washington, DC: American Psychological Association.
  28. Hogan, K. (1999). Sociocognitive roles in science group discourse. International Journal of Science Education, 21(8), 855-882. https://doi.org/10.1080/095006999290336
  29. Hutchison, P., & Hammer, D. (2010). Attending to student epistemological framing in a science classroom. Science Education, 94(3), 506-524.
  30. Jimenez-Aleixandre, M., Rodriguez, A., & Duschl, R. (2000). "Doing the lesson" or "doing science": Argument in high school genetics. Science Education, 84(6), 757-792. https://doi.org/10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F
  31. Kelly, G. J. (2008). Inquiry, activity and epistemic practice. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry: Recommendations for research and implementation (pp. 99-117). Rotterdam: Sense Publishers.
  32. Kelly, G. J., & Chen, C. (1999). The sound of music: Constructing science as a sociocultural practice through oral and written discourse. Journal of Research in Science Teaching, 36(8), 883-915. https://doi.org/10.1002/(SICI)1098-2736(199910)36:8<883::AID-TEA1>3.0.CO;2-I
  33. Kim, H., & Song, J. (2004). The exploration of open scientific inquiry model emphasizing students' argumentation. Journal of the Korean Association Research in Science Education, 24(6), 1216-1234
  34. Kind, P. M., Kind, V., Hofstein, A., & Wilson, J. (2011). peer argumentation in the school science laboratory exploring effects of task features. International Journal of Science Education, 33(18), 2527-2558. https://doi.org/10.1080/09500693.2010.550952
  35. Kuhn, L., & Reiser, B. (2005). Students constructing and defending evidence-based scientific explanations. In annual meeting of the National Association for Research in Science Teaching, Dallas, TX.
  36. Laukenmann, M., Bleicher, M., Fuss, S., Glaser-Zikuda, M., Mayring, P., & von Rhoneck, C. (2003). An investigation of the influence of emotional factors on learning in physics instruction. International Journal of Science Education, 25(4), 489-507. https://doi.org/10.1080/09500690210163233
  37. Lee, S., Bak, D., & Nam, J. (2015). Impact of Peer Assessment Activities on High School Student's Argumentation in Argument-Based Inquiry. Journal of the Korean Association for Science Education, 35(3), 353-361. https://doi.org/10.14697/jkase.2015.35.3.0353
  38. Lee, E., Yun, S., & Kim, H., (2015). Exploring small group argumentation and epistemological framing of gifted science students as revealed by analysis of their responses to anomalous data. Journal of the Korean Association for Science Education, 35(3), 419-429. https://doi.org/10.14697/jkase.2015.35.3.0419
  39. Lee, J. (2011). Middle school students' construction of inquiry question in small group project-based scientific inquiry. Doctoral dissertation, Seoul National University, Seoul.
  40. Leitao, S. (2000). The potential of argument in knowledge building. Human Development, 43(6), 332-360. https://doi.org/10.1159/000022695
  41. Linn, M. C., & Eylon, B. S. (2006). Science education: Integrating views of learning and instruction. Handbook of educational psychology, 2, 511-544.
  42. Maloney, D, P.(1994). Research on problem solving: Physics In Gabel, D, L. (ed.) Handbook of Research on Science Teaching and Learning. New York: Macmillan Publishing Company.
  43. Maloney, J., & Simon, S. (2006). Mapping children's discussions of evidence in science to assess collaborationand argumentation, International Journal of Science Education, 28(15), 1817-1841. https://doi.org/10.1080/09500690600855419
  44. McNeill, K. L., & Krajcik, J. (2006). Supporting students' construction of scientific explanation through generic versus context-specific written scaffolds. In annual meeting of the American Educational Research Association. San Francisco, California.
  45. McNeill, K. L., & Krajcik, J. (2007). Middle school students' use of appropriate and inappropriate evidence in writing scientific explanations. Thinking with data, 233-265.
  46. Mercer, N. (2000). Words and minds: How we use language to think together. London: Routledge.
  47. Ministry of Education and Human Resources Development[MEHRD]. (2007). A guide for science curriculum. Seoul; Ministry of Education and Human Resources Development
  48. Mortimer, E. F., & Scott, P. (2003). Meaning making in secondary science classrooms. Buckingham: Open University Press.
  49. National Research Council (Ed.). (2000). Inquiry and the National Science Education Standards: A Guide for Teaching and Learning. National Academy Press.
  50. National Research Council. (2011). A framework for K-12 science education: Practices, cross cutting concepts and core ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of behavioral and Social Science and Education. Washington, DC: The National Academies Press.
  51. Newton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553-576. https://doi.org/10.1080/095006999290570
  52. Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of research in science teaching, 41(10), 994-1020. https://doi.org/10.1002/tea.20035
  53. Park, S-H., Lee S., Kim, H-B. (2014). Exploring middle school students' metacognitive development via collaborative reflection of small-group argumentation in science classroom. Biology Education, 42(1), 1-15. https://doi.org/10.15717/bioedu.2014.42.1.1
  54. Pickering, A. (1992). From science as knowledge to science as practice. In A. Pickering (Ed.), Science as practice and culture (pp. 1-26). Chicago: Chicago University Press.
  55. Sadler, T. (2006). Promoting discourse and argumentation in science teacher education. Journal of Science Teacher Education, 17, 323-346. https://doi.org/10.1007/s10972-006-9025-4
  56. Sampson, V., & Clark, D. B. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447-472. https://doi.org/10.1002/sce.20276
  57. Sandoval, W. A. (2005). Understanding students' practical epistemologies and their influence on learning through inquiry. Science Education, 89(4), 634-656. https://doi.org/10.1002/sce.20065
  58. Sandoval, W. A., & Millwood, K. (2005). The quality of students' use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23-55. https://doi.org/10.1207/s1532690xci2301_2
  59. Sandoval, W., & Morrison, K. (2003). High school students' ideas about theories and theory change after a biological inquiry unit. Journal of Research in Science Teaching, 40(4), 369-392. https://doi.org/10.1002/tea.10081
  60. Schwarz, B., & Glassner, A. (2003). The blind and the paralytic: Supporting argumentation in everyday and scientific issues. In J. Andriessen, M. Baker, & D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 227-260). Dordrecht, the Netherlands: Kluwer.
  61. Schwarz, B., B., Neuman, Y., Gil, J., & Ilya, M. (2003). Construction of collective and individual knowledge in argumentative activity. Journal of the Learning Sciences, 12(2), 219-256. https://doi.org/10.1207/S15327809JLS1202_3
  62. Shepardson, D. P., & Britsch, S. J. (2006). Zones of interaction: Differential access to elementary science discourse. Journal of research in Science Teaching, 3(5), 443-466.
  63. Shim, S-Y. (2015). Shift in epistemological framing of small group students during their social construction of scientific models. Master thesis, Seoul National University, Seoul.
  64. Toulmin, S. (1958). The use of argument. Cambridge: Cambridge University Press.
  65. von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students' argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101-131. https://doi.org/10.1002/tea.20213
  66. Walker, J. P., & Sampson, V. (2013). Learning to argue and arguing to learn: argument driven inquiry as a way to help undergraduate chemistry students learn how to construct arguments and engage in argumentation during a laboratory course. Journal of Research in Science Teaching, 50(5), 561-596. https://doi.org/10.1002/tea.21082
  67. Walton, D. N. (1992). Plausible argument in everyday conversation. Albany: State University of New York Press.
  68. Yun, S., & Kim, H., (2011). Development and Application of the Scientific Inquiry Tasks for Small Group Argumentation. Journal of the Korean Association for Science Education, 31(5), 694-708.
  69. Zohar, A., & Nemet, F. (2002). Fostering students' knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35-62. https://doi.org/10.1002/tea.10008

과제정보

연구 과제 주관 기관 : 한국연구재단