DOI QR코드

DOI QR Code

Charts for estimating rock mass shear strength parameters

  • Received : 2015.10.08
  • Accepted : 2015.12.12
  • Published : 2016.03.25

Abstract

Charts are used extensively in slope practical application to meet the need of quick assessment of rock slope design. However, Charts for estimating the shear strength of the rock mass of a slope are considerably limited. In this paper, based on the Hoek-Brown (HB) criterion which is widely used in rock slope engineering, we present charts which can be used to estimate the Mohr-Coulomb (MC) parameters angle of friction ${\phi}$ and cohesion c for given slopes. In order to present the proposed charts, we firstly present the derivation of the theoretical relationships between the MC parameters and ${\sigma}_{ci}/({\gamma}H)$ which is termed the strength ratio (SR). It is found that the values of $c/{\sigma}_{ci}$ and ${\phi}$ of a slope depend only on the magnitude of SR, regardless of the magnitude of the individual parameters ${\sigma}_{ci}$(uniaxial compressive strength), ${\gamma}$(unit weight) and H (slope height). Based on the relationships between the MC parameters and SR, charts are plotted to show the relations between the MC parameters and HB parameters. Using the proposed charts can make a rapid estimation of shear strength of rock masses directly from the HB parameters, slope geometry and rock mass properties for a given slope.

Keywords

shear strength parameters;strength ratio;Hoek-Brown;charts assessment

References

  1. Azari, B., Fatahi, B. and Khabbaz, H. (2015), "Numerical analysis of vertical drains accelerated consolidation considering combined soil disturbance and visco-plastic behaviour", Geomech. Eng., Int. J., 8(2), 187-220. https://doi.org/10.12989/gae.2015.8.2.187
  2. Barton, N. (2013), "Shear strength criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions", J. Roc. Mech. Geotech. Eng., 5(4), 249-261. https://doi.org/10.1016/j.jrmge.2013.05.008
  3. Chen, G., Huang, R., Xu, Q., Li, T. and Zhu, M. (2013), "Progressive modelling of the gravity-induced landslide using the local dynamic strength reduction method", J. Mt. Sci., 10(4), 532-540. https://doi.org/10.1007/s11629-013-2367-4
  4. Eid, H. (2014), "Stability charts for uniform slopes in soils with nonlinear failure envelopes", Eng. Geol., 168, 38-45. https://doi.org/10.1016/j.enggeo.2013.10.021
  5. Fan, L., Yi, X. and Ma, G. (2013), "Numerical manifold method (NMM) simulation of stress wave propagation through fractured rock", Int. J. Appl. Mech., 5(2), 1350022. https://doi.org/10.1142/S1758825113500221
  6. Gao, Y., Zhang, F., Lei, G., Li, D., Wu, Y. and Zhang, N. (2013), "Stability charts for 3D failures of homogeneous slopes", J. Geotech. Geoenviron. Eng., ASCE, 139(9), 1528-1538. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000866
  7. Hoek, E. (2012), "Blast damage factor D", Technical note for RocNews. https://www.rocscience.com
  8. Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek-Brown failure criterion-2002 Edition", Proceedings of NARMS-TAC 2002, Mining Innovation and Technology, (R. Hammah, W. Bawden, J. Curran, and M. Telesnicki Eds.), Toronto, Canada, July, pp. 267-273.
  9. Li, X. and Tao, M. (2015), "The influence of initial stress on wave propagation and dynamic elastic coefficients", Geomech. Eng., Int. J., 8(3), 377-390. https://doi.org/10.12989/gae.2015.8.3.377
  10. Marinos, V., Marinos, P. and Hoek, E. (2005), "The geological strength index: applications and limitations", B Eng. Geol. Environ., 64(1), 55-65. https://doi.org/10.1007/s10064-004-0270-5
  11. Michalowski, R.L. (2010), "Limit analysis and stability charts for 3D slope failures", J. Geotech. Geoenviron. Eng., ASCE, 136(4), 583-593. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000251
  12. Shen, J. and Karakus, M. (2014), "Simplified method for estimating the Hoek-Brown constant for intact rocks", J. Geotech. Geoenviron. Eng., ASCE, 140(6), 04014025. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001116
  13. Shen, J., Karakus, M. and Xu, C. (2013), "Chart-based slope stability assessment using the Generalized Hoek-Brown criterion", Int. J. Rock. Mech. Min. Sci., 64, 210-219.
  14. Wyllie, D.C. and Mah, C. (2004), Rock Slope Engineering: Civil and Mining, (4th Edition), Spon Press, New York, NY, USA.
  15. Yang, X. and Pan, Q. (2015), "Three dimensional seismic and static stability of rock slopes", Geomech. Eng., Int. J., 8(1), 97-111. https://doi.org/10.12989/gae.2015.8.1.097
  16. Zhang, G., Tan, J., Zhang, L. and Xiang, Y. (2015), "Linear regression analysis for factors influencing displacement of high-filled embankment slopes", Geomech. Eng., Int. J., 8(4), 511-521. https://doi.org/10.12989/gae.2015.8.4.511
  17. Zheng, D., Nian, T., Liu, B., Yin, P. and Song, L. (2015), "Coefficient charts for active earth pressures under combined loadings", Geomech. Eng., Int. J., 8(3), 461-473. https://doi.org/10.12989/gae.2015.8.3.461
  18. Zuo, J., Liu, H. and Li, H. (2015), "A theoretical derivation of the Hoek-Brown failure criterion for rock materials", J. Roc. Mech. Geotech. Eng., 7(4), 361-366. https://doi.org/10.1016/j.jrmge.2015.03.008

Cited by

  1. The Shear Strength of the Nature Loess Joint: A Case Study in Shaanxi Province vol.47, pp.3, 2018, https://doi.org/10.1520/JTE20170759

Acknowledgement

Supported by : National Natural Science Foundation of China