DOI QR코드

DOI QR Code

Development of a predictive model of the limiting current density of an electrodialysis process using response surface methodology

  • Ali, Mourad Ben Sik ;
  • Hamrouni, Bechir
  • Received : 20150229
  • Accepted : 2016.01.29
  • Published : 2016.03.25

Abstract

Electrodialysis (ED) is known to be a useful membrane process for desalination, concentration, separation, and purification in many fields. In this process, it is desirable to work at high current density in order to achieve fast desalination with the lowest possible effective membrane area. In practice, however, operating currents are restricted by the occurrence of concentration polarization phenomena. Many studies showed the occurrence of a limiting current density (LCD). The limiting current density in the electrodialysis process is an important parameter which determines the electrical resistance and the current utilization. Therefore, its reliable determination is required for designing an efficient electrodialysis plant. The purpose of this study is the development of a predictive model of the limiting current density in an electrodialysis process using response surface methodology (RSM). A two-factor central composite design (CCD) of RSM was used to analyze the effect of operation conditions (the initial salt concentration (C) and the linear flow velocity of solution to be treated (u)) on the limiting current density and to establish a regression model. All experiments were carried out on synthetic brackish water solutions using a laboratory scale electrodialysis cell. The limiting current density for each experiment was determined using the Cowan-Brown method. A suitable regression model for predicting LCD within the ranges of variables used was developed based on experimental results. The proposed mathematical quadratic model was simple. Its quality was evaluated by regression analysis and by the Analysis Of Variance, popularly known as the ANOVA.

Keywords

electrodialysis;concentration polarization;limiting current density;response surface methodology;central composite design

References

  1. Almeida, L.C., Garcia-Segura, S., Bocchi, N. and Brillas, E. (2011), "Solar photoelectro-Fenton degradation of paracetamol using a flow plant with a Pt/air-diffusion cell coupled with a compound parabolic collector: Process optimization by response surface methodology", Appl. Catal., B, 103(1-2), 21-30. https://doi.org/10.1016/j.apcatb.2011.01.003
  2. Alvarado, L. and Chen, A. (2014), "Electrodeionization: Principles, strategies and applications", Electrochim. Acta, 132, 583-597. https://doi.org/10.1016/j.electacta.2014.03.165
  3. Baker, R.W. (2004), Membrane Technology and Applications, John Wiley & Sons, Ltd., England, UK.
  4. Banasiak, L.J. and Schafer, A.I. (2009), "Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter", J. Membr. Sci., 334(1-2), 101-109. https://doi.org/10.1016/j.memsci.2009.02.020
  5. Ben Sik Ali, M., Mnif, A., Hamrouni, B. and Dhahbi, M. (2010), "Electrodialytic desalination of brackish water: Effect of process parameters and water characteristics", Ionics, 16(7), 621-629. https://doi.org/10.1007/s11581-010-0441-2
  6. Boubakri, A., Hafiane, A. and Bouguecha, S.A.T. (2014a), "Application of response surface methodology for modeling and optimization of membrane distillation desalination process", J. Ind. Eng. Chem., 20(5), 3163-3169. https://doi.org/10.1016/j.jiec.2013.11.060
  7. Boubakri, A., Bouchrit, R., Hafiane, A. and Bouguecha, S.A.T. (2014b), "Fluoride removal from aqueous solution by direct contact membrane distillation: theoretical and experimental studies", Environ. Sci. Pollut. Res., 21(17), 10493-10501. https://doi.org/10.1007/s11356-014-2858-z
  8. Daniels, J.A. (2014), Advances in Environmental Research, (Volume 32), Nova Science Publishers, New York, NY, USA.
  9. Dermentzis, K. (2010), "Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/electrodeionization", J. Hazard. Mater., 173(1-3), 647-652. https://doi.org/10.1016/j.jhazmat.2009.08.133
  10. Dlugolecki, P., Anet, B., Metz, S.J., Nijmeijer, K. and Wessling, M. (2010), "Transport limitations in ion exchange membranes at low salt concentrations", J. Membr. Sci., 346(1), 163-171. https://doi.org/10.1016/j.memsci.2009.09.033
  11. Doyen, A., Roblet, C., L'Archeveque-Gaudet, A. and Bazinet, L. (2014), "Mathematical sigmoid-model approach for the determination of limiting and over-limiting current density values", J. Membr. Sci., 452, 453-459. https://doi.org/10.1016/j.memsci.2013.10.069
  12. Fouladitajar, A., Ashtiani, F.Z., Dabir, B., Rezaei, H. and Valizadeh, B. (2014), "Response surface methodology for the modeling and optimization of oil-in-water emulsion separation using gas sparging assisted microfiltration", Environ. Sci. Pollut. Res., 22(3), 2311-2327.
  13. Gabriel, A.A., Cayabyab, J.E.C., Tan, A.K.L., Corook, M.L.F., Ables, E.J.O. and Tiangson-Bayaga, C.L.P. (2015), "Development and validation of a predictive model for the influences of selected product and process variables on ascorbic acid degradation in simulated fruit juice", Food Chem., 177, 295-303. https://doi.org/10.1016/j.foodchem.2015.01.049
  14. Geraldes, V. and Afonso, M.D. (2010a), "Limiting current density in the electrodialysis of multi-ionic solutions", J. Membr. Sci., 360(1), 499-508. https://doi.org/10.1016/j.memsci.2010.05.054
  15. Geraldes, V. and Afonso, M.D. (2010b), "Limiting current density in the electrodialysis of multi-ionic solutions", J. Membr. Sci., 360(1-2), 499-508. https://doi.org/10.1016/j.memsci.2010.05.054
  16. Ghyselbrecht, K., Huygebaert, M., Van der Bruggen, B., Ballet, R., Meesschaert, B. and Pinoy, L. (2013), "Desalination of an industrial saline water with conventional and bipolar membrane electrodialysis", Desalination, 318, 9-18. https://doi.org/10.1016/j.desal.2013.03.020
  17. Ghyselbrecht, K., Silva, A., Van der Bruggen, B., Boussu, K., Meesschaert, B. and Pinoy, L. (2014), "Desalination feasibility study of an industrial NaCl stream by bipolar membrane electrodialysis", J. Environ. Manage., 140, 69-75. https://doi.org/10.1016/j.jenvman.2014.03.009
  18. Kaňavova, N., Machuca, L. and Tvrznik, D. (2014), "Determination of limiting current density for different electrodialysis modules", Chem. Pap., 68(3), 324-329.
  19. Krol, J.J., Wessling, M. and Strathmann, H. (1999), "Concentration polarization with monopolar ion exchange membranes: current-voltage curves and water dissociation", J. Membr. Sci., 162(1-2), 145-154. https://doi.org/10.1016/S0376-7388(99)00133-7
  20. Lee, H.J., Sarfert, F., Strathmann, H. and Moon, S.H. (2002), "Designing of an electrodialysis desalination plant", Desalination, 142(3), 267-286. https://doi.org/10.1016/S0011-9164(02)00208-4
  21. Lee, H.-J., Strathmann, H. and Moon, S.-H. (2006a), "Determination of the limiting current density in electrodialysis desalination as an empirical function of linear velocity", Desalination, 190(1-3), 43-50. https://doi.org/10.1016/j.desal.2005.08.004
  22. Lee, H.J., Strathmann, H. and Moon, S.H. (2006b), "Determination of the limiting current density in electrodialysis desalination as an empirical function of linear velocity", Desalination, 190(1-3), 43-50. https://doi.org/10.1016/j.desal.2005.08.004
  23. Li, H., Li, Y., Xiang, L., Huang, Q., Qiu, J., Zhang, H., Sivaiah, M.V., Baron, F., Barrault, J., Petit, S. and Valange, S. (2015), "Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fesmectite: Response surface approach, degradation pathway, and toxicity evaluation", J. Hazard. Mater., 287, 32-41. https://doi.org/10.1016/j.jhazmat.2015.01.023
  24. Meng, H., Deng, D., Chen, S. and Zhang, G. (2005), "A new method to determine the optimal operating current (ilim) in the electrodialysis process", Desalination, 181(1), 101-108. https://doi.org/10.1016/j.desal.2005.01.014
  25. Moon, S.-H. and Yun, S.-H. (2014), "Process integration of electrodialysis for a cleaner environment", Curr. Opin. Chem. Eng., 4, 25-31. https://doi.org/10.1016/j.coche.2014.01.001
  26. Mourabet, M., El Rhilassi, A., El Boujaady, H., Bennani-Ziatni, M., El Hamri, R. and Taitai, A. (2012), "Removal of fluoride from aqueous solution by adsorption on Apatitic tricalcium phosphate using Box-Behnken design and desirability function", Appl. Surf. Sci., 258(10), 4402-4410. https://doi.org/10.1016/j.apsusc.2011.12.125
  27. Mourabet, M., El Rhilassi, A., El Boujaady, H., Bennani-Ziatni, M. and Taitai, A. (2013), "Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite", Arab. J. Chem. DOI: http://dx.doi.org/10.1016/j.arabjc.2013.12.028 [In Press] https://doi.org/10.1016/j.arabjc.2013.12.028
  28. Nikonenko, V.V., Kovalenko, A.V., Urtenov, M.K., Pismenskaya, N.D., Han, J., Sistat, P. and Pourcelly, G. (2014), "Desalination at overlimiting currents: State-of-the-art and perspectives", Desalination, 342, 85-106. https://doi.org/10.1016/j.desal.2014.01.008
  29. Noble, R.D. and Stern, S.A. (1995), "Membrane Separations Technologies Principles and Applications", Elsevier Science B.V., Amsterdam, The Netherlands.
  30. Strathmann, H. (2010), "Electrodialysis, a mature technology with a multitude of new applications", Desalination, 264(3), 268-288. https://doi.org/10.1016/j.desal.2010.04.069
  31. Tanaka, Y. (2002), "Current density distribution, limiting current density and saturation current density in an ion-exchange membrane electrodialyzer", J. Membr. Sci., 210(1), 65-75. https://doi.org/10.1016/S0376-7388(02)00376-9
  32. Tanaka, Y. (2005a), "Limiting current density of an ion-exchange membrane and of an electrodialyzer", J. Membr. Sci., 266(1-2), 6-17. https://doi.org/10.1016/j.memsci.2005.05.005
  33. Tanaka, Y. (2005b), "Limiting current density of an ion-exchange membrane and of an electrodialyzer", J. Membr. Sci., 266(1-2), 6-17. https://doi.org/10.1016/j.memsci.2005.05.005
  34. Tanaka, Y. (2006), "Irreversible thermodynamics and overall mass transport in ion-exchange membrane electrodialysis", J. Membr. Sci., 281(1-2), 517-531. https://doi.org/10.1016/j.memsci.2006.04.022
  35. Tanaka, Y., Uchino, H. and Murakami, M. (2012), "Continuous ion-exchange membrane electrodialysis of mother liquid discharged from a salt-manufacturing plant and transport of Cl-ions and $SO_4$ 2-ions", Membr. Water Treat., Int. J., 3(1), 63-76. https://doi.org/10.12989/mwt.2012.3.1.063
  36. Wang, Y., Huang, C. and Xu, T. (2010), "Optimization of electrodialysis with bipolar membranes by using response surface methodology", J. Membr. Sci., 362(1-2), 249-254. https://doi.org/10.1016/j.memsci.2010.06.049
  37. Xu, T. and Huang, C. (2008), "Electrodialysis-based separation technologies: A critical review", AIChE J., 54(12), 3147-3159. https://doi.org/10.1002/aic.11643
  38. Zazouli, M.A., Dianati Tilaki, R.A. and Safarpour, M. (2014), "Modeling nitrate removal by nano-scaled zero-valent iron using response surface methodology", Health Scope, 3(3), e15728.
  39. Zerdoumi, R., Oulmi, K. and Benslimane, S. (2014), "Electrochemical characterization of the CMX cation exchange membrane in buffered solutions: Effect on concentration polarization and counterions transport properties", Desalination, 340, 42-48. https://doi.org/10.1016/j.desal.2014.02.014
  40. Zhang, X., Lu, W., Yang, P. and Cong, W. (2008), "Application of response surface methodology to optimize the operation process for regeneration of acid and base using bipolar membrane electrodialysis", J. Appl. Chem. Biotechnol., 83(1), 12-19. https://doi.org/10.1002/jctb.1732

Cited by

  1. Desalting of tobacco extract using electrodialysis vol.7, pp.4, 2016, https://doi.org/10.12989/mwt.2016.7.4.341
  2. Modelling of the limiting current density of an electrodialysis process by response surface methodology vol.24, pp.2, 2018, https://doi.org/10.1007/s11581-017-2214-7