DOI QR코드

DOI QR Code

HARMONIC HOMOMORPHISMS BETWEEN TWO LIE GROUPS

  • Son, Heui-Sang (Department of Applied Mathematics, Pukyong National University) ;
  • Kim, Hyun Woong (Department of Applied Mathematics, Pukyong National University) ;
  • Park, Joon-Sik (Department of Mathematics, Pusan University of Foreign Studies)
  • Received : 2015.03.16
  • Accepted : 2015.12.16
  • Published : 2016.03.25

Abstract

In this paper, we get a complete condition for a group homomorphism of a compact Lie group with an arbitrarily given left invariant Riemannian metric into another Lie group with a left invariant metric to be a harmonic map, and then obtain a necessary and sufficient condition for a group homomorphism of (SU(2), g) with a left invariant metric g into the Heisenberg group (H, $h_0$) to be a harmonic map.

Keywords

Lie group;group homomorphism;left invariant metric;Heisenberg group

References

  1. H. W. Kim, Y.-S. Pyo and H.-J. Shin, Ricci and scalar curvatures on SU(3), Honam Math. J., 34(2) 2012), 231-239. https://doi.org/10.5831/HMJ.2012.34.2.231
  2. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience Pub., 1963.
  3. J.-S. Park, Yang-Mills connections in orthonormal frame bundles over SU(2), Tsukuba J. Math., 18 (1994), 203-206. https://doi.org/10.21099/tkbjm/1496162465
  4. J.-S. Park, Critical homogeneous metrics on the Heisenberg manifold, Int. Inform. Sci., 11 (2005), 31-34.
  5. J.-S. Park and W. T. Oh, The Abbena-Thurston manifold as a critical point, Can. Math. Bull., 39 (1996), 352-359. https://doi.org/10.4153/CMB-1996-042-3
  6. K. Sugahara, The sectional curvature and the diameter estimate for the left invariant metrics on SU(2, ${\mathbb{C}}$) and SO(3, ${\mathbb{R}}$), Math. Japonica, 26 (1981), 153-159.
  7. H. Urakawa, Calculus of variations and harmonic Maps, Amer. Math. Soc., Providence, Rhode Island, 1993.