DOI QR코드

DOI QR Code

INT-SOFT SEMIGROUPS WITH TWO THRESHOLDS

Kong, In Suk

  • Received : 2015.08.22
  • Accepted : 2016.01.22
  • Published : 2016.03.25

Abstract

In this paper, we study more general version of the paper [J. H. Lee, I. S. Kong, H. S. Kim and J. U. Jung, Generalized int-soft subsemigroups, Ann. Fuzzy Math. Inform. 8(6) (2014) 869-887]. We introduce the notion of int-soft semigroup with two thresholds ${\varepsilon}$ and ${\delta}$ (briefly, (${\varepsilon}$, ${\delta}$)-int-soft semigroup) of a semigroup S, and investigate several related properties.

Keywords

int-soft semigroup;${\theta}$-generalized int-soft semigroup;(${\varepsilon}$, ${\delta}$)-int-soft semigroup

References

  1. U. Acar, F. Koyuncu and B. Tanay, Soft sets and soft rings, Comput. Math. Appl. 59 (2010) 3458-3463. https://doi.org/10.1016/j.camwa.2010.03.034
  2. H. Aktas and N. Cagman, Soft sets and soft groups, Inform. Sci. 177 (2007) 2726-2735. https://doi.org/10.1016/j.ins.2006.12.008
  3. A. O. Atagun and A. Sezgin, Soft substructures of rings, fields and modules, Comput. Math. Appl. 61 (2011) 592-601. https://doi.org/10.1016/j.camwa.2010.12.005
  4. N. Cagman and S. Enginoglu, FP-soft set theory and its applications, Ann. Fuzzy Math. Inform. 2 (2011) 219-226.
  5. F. Feng, Soft rough sets applied to multicriteria group decision making, Ann. Fuzzy Math. Inform. 2 (2011) 69-80.
  6. F. Feng, Y. B. Jun and X. Zhao, Soft semirings, Comput. Math. Appl. 56 (2008) 2621-2628. https://doi.org/10.1016/j.camwa.2008.05.011
  7. Y. B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl. 56 (2008) 1408-1413. https://doi.org/10.1016/j.camwa.2008.02.035
  8. Y. B. Jun and S. S. Ahn, Applications of soft sets in BE-algebras, Algebra, Volume 2013, Article ID 368962, 8 pages.
  9. Y. B. Jun, M. S. Kang and K. J. Lee, Intersectional soft sets and applications to BCK/BCI-algebras, Commun. Korean Math. Soc. 28(2013) 11-24. https://doi.org/10.4134/CKMS.2013.28.1.011
  10. Y. B. Jun, K. J. Lee and A. Khan, Soft ordered semigroups, Math. Logic Q. 56 (2010) 42-50. https://doi.org/10.1002/malq.200810030
  11. Y. B. Jun, K. J. Lee and C. H. Park, Soft set theory applied to ideals in d-algebras, Comput. Math. Appl. 57 (2009) 367-378. https://doi.org/10.1016/j.camwa.2008.11.002
  12. Y. B. Jun, K. J. Lee and E. H. Roh, Intersectional soft BCK/BCI-ideals, Ann. Fuzzy Math. Inform. 4(1) (2012) 1-7.
  13. Y. B. Jun, K. J. Lee and J. Zhan, Soft p-ideals of soft BCI-algebras, Comput. Math. Appl. 58 (2009) 2060-2068. https://doi.org/10.1016/j.camwa.2009.07.072
  14. Y. B. Jun and C. H. Park, Applications of soft sets in ideal theory of BCK/BCI-algebras, Inform. Sci. 178 (2008) 2466-2475.
  15. J. H. Lee, I. S. Kong, H. S. Kim and J. U. Jung, Generalized int-soft subsemigros, Ann. Fuzzy Math. Inform. 8(6) (2014) 869-887.
  16. P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555-562. https://doi.org/10.1016/S0898-1221(03)00016-6
  17. P. K. Maji, A. R. Roy and R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl. 44 (2002) 1077-1083. https://doi.org/10.1016/S0898-1221(02)00216-X
  18. D. Molodtsov, Soft set theory - First results, Comput. Math. Appl. 37 (1999) 19-31.
  19. C. H. Park, Y. B. Jun and M. A. Ozturk, Soft WS-algebras, Commun. Korean Math. Soc. 23 (2008) 313-324. https://doi.org/10.4134/CKMS.2008.23.3.313
  20. S. Z. Song, H. S. Kim and Y. B. Jun, Ideal theory in semigroups based on intersectional soft sets, The Scientific World Journal Volume 2014, Article ID 136424, 7 pages.
  21. J. Zhan and Y. B. Jun, Soft BL-algebras based on fuzzy sets, Comput. Math. Appl. 59 (2010) 2037-2046. https://doi.org/10.1016/j.camwa.2009.12.008