DOI QR코드

DOI QR Code

A comparison study on regression with stationary nonparametric autoregressive errors

정상 비모수 자기상관 오차항을 갖는 회귀분석에 대한 비교 연구

Yu, Kyusang
유규상

  • Received : 2015.12.15
  • Accepted : 2015.12.31
  • Published : 2016.02.29

Abstract

We compare four methods to estimate a regression coefficient under linear regression models with serially correlated errors. We assume that regression errors are generated with nonlinear autoregressive models. The four methods are: ordinary least square estimator, general least square estimator, parametric regression error correction method, and nonparametric regression error correction method. We also discuss some properties of nonlinear autoregressive models by presenting numerical studies with typical examples. Our numerical study suggests that no method dominates; however, the nonparametric regression error correction method works quite well.

Keywords

nonparametric autoregressive model;regression;efficiency

References

  1. Bhattacharya, R. and Lee, C. (1995). Ergodicity of nonlinear first order autoregressive models, Journal of Theoretical Probability, 8, 210-219.
  2. Biscay, R. J., Lavielle, M., and Ludena, C. (2005). Estimation of nonparametric autoregressive time series models under dynamical constraints, Journal of Time Series Analysis, 26, 371-397. https://doi.org/10.1111/j.1467-9892.2004.00407.x
  3. Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications, Chapman & Hall, London.
  4. Haggan, V. and Ozaki, T. (1981). Modelling nonlinear random vibrations using an amplitude dependent autoregressive time series model, Biometrika, 68, 189-196. https://doi.org/10.1093/biomet/68.1.189
  5. Sheather, S. (2009). A Modern Approach to Regression with R, Springer, New York.
  6. Su, L. and Ullah, A. (2006). More efficient estimation in nonparametric regression with nonparametric autocorrelated errors, Econometric Theory, 22, 98-126.
  7. Tong, H. (1990). Nonlinear Time Series: A Dynamical Approach, Oxford University Press, Oxford.
  8. Tong, H. and Lim, K. (1980). Threshold autoregression, limit cycles and cyclical data (with Discussion), Journal of Royal Statistical Society B, 42, 245-292
  9. Truong, Y. K. and Stone, C. (1992). Nonparametric function estimation involving time series, The Annals of Statistics, 20, 77-97. https://doi.org/10.1214/aos/1176348513

Acknowledgement

Supported by : 건국대학교