Synthesis and Characterization of TiO2, Cu2O and Al2O3 Aerosol Nanoparticles Produced by the Multi-Spark Discharge Generator

Efimov, Alexey;Lizunova, Anna;Sukharev, Valentin;Ivanov, Victor

  • Received : 2015.09.17
  • Accepted : 2016.01.21
  • Published : 2016.03.27


The morphology, crystal structure and size of aerosol nanoparticles generated by erosion of electrodes made of different materials (titanium, copper and aluminum) in a multi-spark discharge generator were investigated. The aerosol nanoparticle synthesis was carried out in air atmosphere at a capacitor stored energy of 6 J, a repetition rate of discharge of 0.5 Hz and a gas flow velocity of 5.4 m/s. The aerosol nanoparticles were generated in the form of oxides and had various morphologies: agglomerates of primary particles of $TiO_2$ and $Al_2O_3$ or aggregates of primary particles of $Cu_2O$. The average size of the primary nanoparticles ranged between 6.3 and 7.4 nm for the three substances studied. The average size of the agglomerates and aggregates varied in a wide interval from 24.6 nm for $Cu_2O$ to 46.1 nm for $Al_2O_3$.


nanoparticles;synthesis;aerosols;multi-spark discharge


  1. F. E. Kruis, H. Fissan and A. Peled, J. Aerosol Sci., 29, 511 (1998).
  2. D. Liu and G. Cao, Energy Environ. Sci., 3, 1218 (2010).
  3. G. Wang, L. Zhang and J. Zhang, Chem. Soc. Rev., 41, 797 (2012).
  4. F. Wang, W. B. Tan, Y. Zhang, X. Fan, M. Wang, Nano-technology, 17, R1 (2006).
  5. S. K. Murthy, Int. J. Nanomedicine, 2, 129 (2007).
  6. A. Kamyshny and S. Magdassi, Small, 10, 3515 (2014).
  7. C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole and C. Sanchez, Adv. Mater., 23, 599 (2011).
  8. Y. A. Kotov, Nanotechnol. Russ., 4, 415 (2009).
  9. L. Madler, H. K. Kammler, R. Mueller and S. E. Pratsinis, J. Aerosol Sci., 33, 369 (2002).
  10. D. Vollath, J. Nanopart. Res., 10, 39 (2008).
  11. V. V. Osipov, Y. A. Kotov, M. G. Ivanov, O. M. Samatov, V. V. Lisenkov, V. V. Platonov, A. M. Murzakaev, A. I. Medvedev and E. I. Azarkevich, Laser Phys., 16, 116 (2006).
  12. N. S. Tabrizi, M. Ullmann, V. A. Vons, U. Lafont and A. Schmidt-Ott, J. Nanoparticle Res., 11, 315 (2009).
  13. B. K. Ku and A. D. Maynard, J. Aerosol Sci., 37, 452 (2006).
  15. T. V. Pfeiffer, J. Feng and A. Schmidt-Ott, Adv. Powder Technol., 25, 56 (2014).
  16. B. O. Meuller, M. E. Messing, D. L. J. Engberg, A. M. Jansson, L. I. M. Johansson, S. M. Norlen, N. Tureson and K. Deppert, Aerosol Sci. Technol., 46, 1256 (2012).
  17. J. H. Byeon, J. H. Park, J. Hwang, J. Aerosol Sci., 39, 888 (2008).
  18. J. T. Kim and J. S. Chang, J. Electrostat., 63, 911 (2005).
  19. V. A. Vons, L. C. P. M. de Smet, D. Munao, A. Evirgen, E. M. Kelder and A. Schmidt-Ott, J. Nanopart. Res., 13, 4867 (2011).
  20. H. Horvath and M. Gangl, J. Aerosol Sci., 34, 1581 (2003).
  21. D. Z. Pai, K. Ostrikov, S. Kumar, D. A. Lacoste, I. Levchenko and C. O. Laux, Sci. Reports, 3, 1221 (2013).
  22. E. Hontanon, J. M. Palomares, M. Stein, X. Guo, R. Engeln, H. Nirschl and F. E. Kruis, J. Nanopart. Res., 15, 1957 (2013).
  23. A. A. Efimov, V. V. Ivanov, A. V. Bagazeev, I. V. Beketov, I. A. Volkov and S. V. Shcherbinin, Tech. Phys. Lett., 39, 1053 (2013).
  24. G. A. Mesyats, Pulsed power, Springer Science & Business Media, New York, USA(2007).
  25. R. S. Windeler, S. K. Friedlander and K. E. J. Lehtinen, Aerosol Sci. Technol., 27, 174 (1997).
  26. R. S Windeler, K. E. J. Lehtinen and S. K. Friedlander, Aerosol Sci. Technol., 27, 191 (1997).
  27. D. A. H. Hanaor and C. C. Sorrell, J. Mater. Sci., 46, 855 (2011).
  28. A. O. Musa, T. Akomolafe and M. J. Carter, Sol. Energy Mater. Sol. Cells, 51, 305 (1998).
  29. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon, Nature, 407, 496 (2000).
  30. H. Zhang, X. Ren and Z. Cui, J. Cryst. Growth, 304, 206 (2007).
  31. V. V. Ivanov, S. N. Paranin and V. R. Khrustov, Phys. Met. Met., 94, S98 (2002).
  32. V. G. Zhigalina, A. A. Lizunova, S. N. Sulyanov, V. V. Ivanov and N. A. Kiselev, Nanotechnol. Russ., 9, 492 (2014).
  33. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter and M. Batzill, Sci. Reports, 4, 4043 (2014).
  34. P. R. Solanki, A. Kaushik, V. V. Agrawal and B. D. Malhotra, NPG Asia Mater., 3, 17 (2011).
  35. T. Kim, H. Kang, S. Jeong, D. J. Kang, C. Lee, C. H. Lee, M. K. Seo, J. Y. Lee and B. J. Kim, ACS Appl. Mater. Interfaces, 6, 16956 (2014).
  36. R. Mueller, H. K. Kammler, S. E. Pratsinis, A. Vital, G. Beaucage and P. Burtscher, Powder Technol., 140, 40 (2004).
  37. H. K. Kammler, L. Madler and S. E. Pratsinis, Chem. Eng. Technol., 24, 583 (2001).<583::AID-CEAT583>3.0.CO;2-H
  38. X. Guo, A. Gutsche, M. Wagner, M. Seipenbusch and H. Nirschl, J. Nanopart. Res., 15, 1559 (2013).
  39. S. Bau, O. Witschger, F. Gensdarmes and D. Thomas, J. Nanopart. Res., 14, 1217 (2012).
  40. H. M. Ryan, High Voltage Engineering and Testing, 2nd ed., The Institution of Electrical Engineers, London, England (2001).
  41. ISO 14887:2000 (E). Sample Preparation - Dispersing Procedures for Powders in Liquids.
  42. W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed., Wiley-Interscience, New York, USA (1999).
  43. D. R. Lide, CRC handbook of chemistry and physics : a ready reference book of chemical and physical data, 86th ed., CRC Press, Boca Raton, USA (2005).
  44. M. Ullmann, S. K. Friedlander and A. Schmidt-Ott, J. Nanopart. Res., 4, 499 (2002).
  45. S. K. Friedlander, Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 2nd ed., Oxford University Press, New York, USA (2000).
  46. K. E. J. Lehtinen and M. R. Zachariah, J. Aerosol Sci., 33, 357 (2002).
  47. T. E. Itina and A. Voloshko, Appl. Phys. B, 113, 473 (2013).
  48. F. L. Jones, J. Appl. Phys., 1, 60 (1950).
  49. R. N. Szente, R. J. Munz and M. G. Drouet, J. Phys. D: Appl. hys., 27, 1443 (1994).
  50. M. S. Naidu and V. Kamaraju, High Voltage Engineering, 3rd ed., Tata McGraw-Hill Education, New Delhi, India (2004).
  51. F. Llewellyn-Jones, M. A., D.Phil., D. Sc. and F. Inst. P., Platinum Metals Rev., 7, 58 (1963).
  52. W. Zhu and S. E. Pratsinis, ACS Symp. Ser., 662, 64 (2009).
  53. H. C. Oh, J. H. Ji, J. H. Jung and S. S. Kim, Mater. Sci. Forum, 544-545, 143 (2007).
  54. J. H. Byeon and Y. W. Kim, ACS Appl. Mater. Interfaces, 6, 763 (2014).
  55. X. Jing, J. H. Park, T. M. Peters and P. S. Thorne, Toxicol. In Vitro, 29, 502 (2015).
  56. S. Ghaemi, A. Schmidt-Ott and F. Scarano, Meas. Sci. Technol., 21, 105403 (2010).

Cited by

  1. Influence of the sintering temperature on morphology and particle size of silver synthesized by spark discharge vol.307, pp.1757-899X, 2018,
  2. Dry aerosol jet printing of conductive silver lines on a heated silicon substrate vol.307, pp.1757-899X, 2018,
  3. Influence of the operating parameters of the needle-plate electrostatic precipitator on the size distribution of aerosol particles vol.324, pp.1757-899X, 2018,


Supported by : Russian Science Foundation