DOI QR코드

DOI QR Code

Synthesis and Characterization of TiO2, Cu2O and Al2O3 Aerosol Nanoparticles Produced by the Multi-Spark Discharge Generator

Efimov, Alexey;Lizunova, Anna;Sukharev, Valentin;Ivanov, Victor

  • Received : 2015.09.17
  • Accepted : 2016.01.21
  • Published : 2016.03.27

Abstract

The morphology, crystal structure and size of aerosol nanoparticles generated by erosion of electrodes made of different materials (titanium, copper and aluminum) in a multi-spark discharge generator were investigated. The aerosol nanoparticle synthesis was carried out in air atmosphere at a capacitor stored energy of 6 J, a repetition rate of discharge of 0.5 Hz and a gas flow velocity of 5.4 m/s. The aerosol nanoparticles were generated in the form of oxides and had various morphologies: agglomerates of primary particles of $TiO_2$ and $Al_2O_3$ or aggregates of primary particles of $Cu_2O$. The average size of the primary nanoparticles ranged between 6.3 and 7.4 nm for the three substances studied. The average size of the agglomerates and aggregates varied in a wide interval from 24.6 nm for $Cu_2O$ to 46.1 nm for $Al_2O_3$.

Keywords

nanoparticles;synthesis;aerosols;multi-spark discharge

References

  1. F. E. Kruis, H. Fissan and A. Peled, J. Aerosol Sci., 29, 511 (1998). https://doi.org/10.1016/S0021-8502(97)10032-5
  2. D. Liu and G. Cao, Energy Environ. Sci., 3, 1218 (2010). https://doi.org/10.1039/b922656g
  3. G. Wang, L. Zhang and J. Zhang, Chem. Soc. Rev., 41, 797 (2012). https://doi.org/10.1039/C1CS15060J
  4. F. Wang, W. B. Tan, Y. Zhang, X. Fan, M. Wang, Nano-technology, 17, R1 (2006).
  5. S. K. Murthy, Int. J. Nanomedicine, 2, 129 (2007).
  6. A. Kamyshny and S. Magdassi, Small, 10, 3515 (2014). https://doi.org/10.1002/smll.201303000
  7. C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole and C. Sanchez, Adv. Mater., 23, 599 (2011). https://doi.org/10.1002/adma.201001410
  8. Y. A. Kotov, Nanotechnol. Russ., 4, 415 (2009). https://doi.org/10.1134/S1995078009070039
  9. L. Madler, H. K. Kammler, R. Mueller and S. E. Pratsinis, J. Aerosol Sci., 33, 369 (2002). https://doi.org/10.1016/S0021-8502(01)00159-8
  10. D. Vollath, J. Nanopart. Res., 10, 39 (2008). https://doi.org/10.1007/s11051-008-9427-7
  11. V. V. Osipov, Y. A. Kotov, M. G. Ivanov, O. M. Samatov, V. V. Lisenkov, V. V. Platonov, A. M. Murzakaev, A. I. Medvedev and E. I. Azarkevich, Laser Phys., 16, 116 (2006). https://doi.org/10.1134/S1054660X06010105
  12. N. S. Tabrizi, M. Ullmann, V. A. Vons, U. Lafont and A. Schmidt-Ott, J. Nanoparticle Res., 11, 315 (2009). https://doi.org/10.1007/s11051-008-9407-y
  13. B. K. Ku and A. D. Maynard, J. Aerosol Sci., 37, 452 (2006). https://doi.org/10.1016/j.jaerosci.2005.05.003
  14. http://www.buonapart-e.eu/
  15. T. V. Pfeiffer, J. Feng and A. Schmidt-Ott, Adv. Powder Technol., 25, 56 (2014). https://doi.org/10.1016/j.apt.2013.12.005
  16. B. O. Meuller, M. E. Messing, D. L. J. Engberg, A. M. Jansson, L. I. M. Johansson, S. M. Norlen, N. Tureson and K. Deppert, Aerosol Sci. Technol., 46, 1256 (2012). https://doi.org/10.1080/02786826.2012.705448
  17. J. H. Byeon, J. H. Park, J. Hwang, J. Aerosol Sci., 39, 888 (2008). https://doi.org/10.1016/j.jaerosci.2008.05.006
  18. J. T. Kim and J. S. Chang, J. Electrostat., 63, 911 (2005). https://doi.org/10.1016/j.elstat.2005.03.066
  19. V. A. Vons, L. C. P. M. de Smet, D. Munao, A. Evirgen, E. M. Kelder and A. Schmidt-Ott, J. Nanopart. Res., 13, 4867 (2011). https://doi.org/10.1007/s11051-011-0466-0
  20. H. Horvath and M. Gangl, J. Aerosol Sci., 34, 1581 (2003). https://doi.org/10.1016/S0021-8502(03)00193-9
  21. D. Z. Pai, K. Ostrikov, S. Kumar, D. A. Lacoste, I. Levchenko and C. O. Laux, Sci. Reports, 3, 1221 (2013). https://doi.org/10.1038/srep01221
  22. E. Hontanon, J. M. Palomares, M. Stein, X. Guo, R. Engeln, H. Nirschl and F. E. Kruis, J. Nanopart. Res., 15, 1957 (2013). https://doi.org/10.1007/s11051-013-1957-y
  23. A. A. Efimov, V. V. Ivanov, A. V. Bagazeev, I. V. Beketov, I. A. Volkov and S. V. Shcherbinin, Tech. Phys. Lett., 39, 1053 (2013). https://doi.org/10.1134/S1063785013120067
  24. G. A. Mesyats, Pulsed power, Springer Science & Business Media, New York, USA(2007).
  25. R. S. Windeler, S. K. Friedlander and K. E. J. Lehtinen, Aerosol Sci. Technol., 27, 174 (1997). https://doi.org/10.1080/02786829708965465
  26. R. S Windeler, K. E. J. Lehtinen and S. K. Friedlander, Aerosol Sci. Technol., 27, 191 (1997). https://doi.org/10.1080/02786829708965466
  27. D. A. H. Hanaor and C. C. Sorrell, J. Mater. Sci., 46, 855 (2011). https://doi.org/10.1007/s10853-010-5113-0
  28. A. O. Musa, T. Akomolafe and M. J. Carter, Sol. Energy Mater. Sol. Cells, 51, 305 (1998). https://doi.org/10.1016/S0927-0248(97)00233-X
  29. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon, Nature, 407, 496 (2000). https://doi.org/10.1038/35035045
  30. H. Zhang, X. Ren and Z. Cui, J. Cryst. Growth, 304, 206 (2007). https://doi.org/10.1016/j.jcrysgro.2007.01.043
  31. V. V. Ivanov, S. N. Paranin and V. R. Khrustov, Phys. Met. Met., 94, S98 (2002).
  32. V. G. Zhigalina, A. A. Lizunova, S. N. Sulyanov, V. V. Ivanov and N. A. Kiselev, Nanotechnol. Russ., 9, 492 (2014). https://doi.org/10.1134/S1995078014050164
  33. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter and M. Batzill, Sci. Reports, 4, 4043 (2014).
  34. P. R. Solanki, A. Kaushik, V. V. Agrawal and B. D. Malhotra, NPG Asia Mater., 3, 17 (2011). https://doi.org/10.1038/asiamat.2010.137
  35. T. Kim, H. Kang, S. Jeong, D. J. Kang, C. Lee, C. H. Lee, M. K. Seo, J. Y. Lee and B. J. Kim, ACS Appl. Mater. Interfaces, 6, 16956 (2014). https://doi.org/10.1021/am504503q
  36. R. Mueller, H. K. Kammler, S. E. Pratsinis, A. Vital, G. Beaucage and P. Burtscher, Powder Technol., 140, 40 (2004). https://doi.org/10.1016/j.powtec.2004.01.004
  37. H. K. Kammler, L. Madler and S. E. Pratsinis, Chem. Eng. Technol., 24, 583 (2001). https://doi.org/10.1002/1521-4125(200106)24:6<583::AID-CEAT583>3.0.CO;2-H
  38. X. Guo, A. Gutsche, M. Wagner, M. Seipenbusch and H. Nirschl, J. Nanopart. Res., 15, 1559 (2013). https://doi.org/10.1007/s11051-013-1559-8
  39. S. Bau, O. Witschger, F. Gensdarmes and D. Thomas, J. Nanopart. Res., 14, 1217 (2012). https://doi.org/10.1007/s11051-012-1217-6
  40. H. M. Ryan, High Voltage Engineering and Testing, 2nd ed., The Institution of Electrical Engineers, London, England (2001).
  41. ISO 14887:2000 (E). Sample Preparation - Dispersing Procedures for Powders in Liquids.
  42. W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed., Wiley-Interscience, New York, USA (1999).
  43. D. R. Lide, CRC handbook of chemistry and physics : a ready reference book of chemical and physical data, 86th ed., CRC Press, Boca Raton, USA (2005).
  44. M. Ullmann, S. K. Friedlander and A. Schmidt-Ott, J. Nanopart. Res., 4, 499 (2002). https://doi.org/10.1023/A:1022840924336
  45. S. K. Friedlander, Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 2nd ed., Oxford University Press, New York, USA (2000).
  46. K. E. J. Lehtinen and M. R. Zachariah, J. Aerosol Sci., 33, 357 (2002). https://doi.org/10.1016/S0021-8502(01)00177-X
  47. T. E. Itina and A. Voloshko, Appl. Phys. B, 113, 473 (2013). https://doi.org/10.1007/s00340-013-5490-6
  48. F. L. Jones, J. Appl. Phys., 1, 60 (1950).
  49. R. N. Szente, R. J. Munz and M. G. Drouet, J. Phys. D: Appl. hys., 27, 1443 (1994). https://doi.org/10.1088/0022-3727/27/7/015
  50. M. S. Naidu and V. Kamaraju, High Voltage Engineering, 3rd ed., Tata McGraw-Hill Education, New Delhi, India (2004).
  51. F. Llewellyn-Jones, M. A., D.Phil., D. Sc. and F. Inst. P., Platinum Metals Rev., 7, 58 (1963).
  52. W. Zhu and S. E. Pratsinis, ACS Symp. Ser., 662, 64 (2009).
  53. H. C. Oh, J. H. Ji, J. H. Jung and S. S. Kim, Mater. Sci. Forum, 544-545, 143 (2007).
  54. J. H. Byeon and Y. W. Kim, ACS Appl. Mater. Interfaces, 6, 763 (2014). https://doi.org/10.1021/am405004a
  55. X. Jing, J. H. Park, T. M. Peters and P. S. Thorne, Toxicol. In Vitro, 29, 502 (2015). https://doi.org/10.1016/j.tiv.2014.12.023
  56. S. Ghaemi, A. Schmidt-Ott and F. Scarano, Meas. Sci. Technol., 21, 105403 (2010). https://doi.org/10.1088/0957-0233/21/10/105403

Cited by

  1. Influence of the sintering temperature on morphology and particle size of silver synthesized by spark discharge vol.307, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/307/1/012081
  2. Dry aerosol jet printing of conductive silver lines on a heated silicon substrate vol.307, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/307/1/012082
  3. Influence of the operating parameters of the needle-plate electrostatic precipitator on the size distribution of aerosol particles vol.324, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/324/1/012016

Acknowledgement

Supported by : Russian Science Foundation