DOI QR코드

DOI QR Code

Correlation Research of Dispersion Factors on the Silica Sol Prepared from Fumed Silica

흄드실리카로부터 제조된 실리카졸의 분산인자 상관성 연구

Park, Min-Gyeong;Kim, Hun;Lim, Hyung Mi;Choi, Jinsub;Kim, Dae Sung
박민경;김훈;임형미;최진섭;김대성

  • Received : 2015.11.10
  • Accepted : 2016.01.23
  • Published : 2016.03.27

Abstract

To study the dispersion factors of silica sol prepared from fumed silica powder, we prepared silica sol under an aqueous system using a batch type bead mill. The dispersion properties of silica sol have a close relationship to dispersion factors such as pH, milling time and speed, the size and amount of zirconia beads, the solid content of fumed silica, and the shape and diameter of the milling impellers. Especially, the silica particles in silica sol were found to show dispersion stability on a pH value above 7, due to the electrostatic repulsion between the particles having a high zeta potential value. The shape and diameter of the impellers installed in the bead mill for the dispersion of fumed silica was very important in reducing the particle size of the aggregated silica. The median particle size ($D_{50}$) of silica sol obtained after milling was also optimized according to the variation of the size and amount of the zirconia beads that were used as the grinding medium, and according to the solid content of fumed silica. The dispersion properties of silica sol were investigated using zeta potential, turbiscan, particle size analyzer, and transmission electron microscopy.

Keywords

fumed silica;silica sol;dispersion factor;bead mill;milling impeller

References

  1. T. Kashiwagi, J. W. Gilman, K. M. Butler, R. H. Harris, J. R. Shields and A. Asano, Fire Mater., 24, 277 (2000). https://doi.org/10.1002/1099-1018(200011/12)24:6<277::AID-FAM746>3.0.CO;2-A
  2. Y. M. Ahn, J. Y. Yoon, C. W. Baek and Y. K. Kim, Wear, 257, 785 (2004). https://doi.org/10.1016/j.wear.2004.03.020
  3. H. Barthel, M. Dreyer, T. Gottschalk-Gaudig, V. Litvinov and E. Nikitina, Macromol. Symp., 187, 573 (2002).
  4. I. A. Rahman and V. Padavettan, Nanomaterials., 2012, 15 (2012).
  5. H. C. Lee, J. H. Kim and Y. H. Chang, J. Korean Ind. Eng. Chem., 17, 386 (2006) (in Korean).
  6. A. M. Buckley and M. Greenblatt, J. Chem. Educ., 71, 599 (1994). https://doi.org/10.1021/ed071p599
  7. S. E. Pratisinis, Prog. Energy Combust. Sci., 24, 197 (1998). https://doi.org/10.1016/S0360-1285(97)00028-2
  8. R. V. Lakshmi, T. Bharathidasan and B. J. Basu, Appl. Surf. Sci., 257, 10421 (2011). https://doi.org/10.1016/j.apsusc.2011.06.122
  9. K. Chrissafis, K. M. Paraskevopoulos, G. Z. Papageorgiou and D. N. Bikiaris, J. Appl. Polym. Sci., 110, 1739 (2008). https://doi.org/10.1002/app.28818
  10. M. J. Park, J. W. Ahn and H. Kim, J. Korean Ceram. Soc., 38, 343 (2001) (in Korean).
  11. J. H. Yu, S. H. Jung, G. P. Hong, J. S. Mun and J. B. Kang, J. Korean Ceram. Soc., 46, 24 (2009) (in Korean). https://doi.org/10.4191/KCERS.2009.46.1.024
  12. H. K. Kang, H. C. Park and H. C. Park, J. Korean Ind. Eng. Chem., 8, 704 (1997) (in Korean).
  13. H. S. Park, B. S. Cho, E. S. Yoo, J. B. Ahn and S. T. Noh, Appl. Chem. Eng., 22, 384 (2011) (in Korean).
  14. H. M. Lim, J. H. Lee, J. H. Jeong, S. G. Oh and S. H. Lee, Eng., 2, 998 (2010). https://doi.org/10.4236/eng.2010.212126
  15. T. Takatsuka, T. Endo, Y. Jianguo, K. Yuminoki and N. Hashimoto, Chem. Pharm. Bull., 57, 1061 (2009). https://doi.org/10.1248/cpb.57.1061
  16. D. H. Lee, G. S. Cho, H. M. Lim, D. S. Kim, C. Y. Kim and S. H. Lee, J. Ceram. Process. Res., 14, 274 (2013).
  17. A. Amiri, G. Oye and J. Sjoblom, Colloids Surf. A, 349, 43 (2009). https://doi.org/10.1016/j.colsurfa.2009.07.050
  18. G. R. Wiese and T. W. Healy, Trans. Faraday Soc., 66, 490 (1970). https://doi.org/10.1039/tf9706600490
  19. K. H. Hwang, J. H. Park and T. K. Yoon, J. Korean Ceram. Soc., 31, 337 (1994) (in Korean).
  20. K. Lee, University physics for scientists and engineers, 182, Hanbitacademy, Seoul, (2011).