Photoluminescence Properties of CaAl2O4:RE3+(RE = Tb, Dy) Phosphors

CaAl2O4:RE3+(RE = Tb, Dy) 형광체의 발광 특성

Cho, Shinho

  • Received : 2015.09.18
  • Accepted : 2016.01.24
  • Published : 2016.03.27


$CaAl_2O_4:RE^{3+}$(RE = Tb or Dy) phosphor powders were synthesized with different contents of activator ions $Tb^{3+}$ and $Dy^{3+}$ by using the solid-state reaction method. The effects of the content of activator ions on the crystal structure, morphology, and emission and excitation properties of the resulting phosphor particles were investigated. XRD patterns showed that all the synthesized phosphors had a monoclinic system with a main (220) diffraction peak, irrespective of the content and type of $Tb^{3+}$ and $Dy^{3+}$ ions. For the $Tb^{3+}$-doped $CaAl_2O_4$ phosphor powders, the excitation spectra consisted of one broad band centered at 271 nm in the range of 220-320 nm and several weak peaks; the main emission band showed a strong green band at 552 nm that originated from the $^5D_4{\rightarrow}^7F_5$ transition of $Tb^{3+}$ ions. For the $Dy^{3+}$-doped $CaAl_2O_4$ phosphor, the emission spectra under ultraviolet excitation at 298 nm exhibited one strong yellow band centered at 581 nm and two weak bands at 488 and 672 nm. Concentration-dependent quenching was observed at 0.05 mol of $Tb^{3+}$ and $Dy^{3+}$ contents in the $CaAl_2O_4$ host lattice.




  1. J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho and G. C. Kim, Appl. Phys. Lett., 84, 2931 (2004).
  2. H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone and Y. Park, Appl. Phys. Lett., 86, 243505 (2005).
  3. G. Li, T. Long, Y. Song, G. Gao, J. Xu, B. An, S. Gan and G. Hong, J. Rare Earth., 28, 22 (2010).
  4. L. Wang and Y. Wang, Physica B, 393, 147 (2007).
  5. S. W. Choi and S. H. Hong, Mater. Sci. Eng. B, 171, 69 (2010).
  6. Y. Zhang, J. Chen, C. Xu, Y. Li and H. J. Seo, Physica B, 472, 6 (2015).
  7. V. Singh, R. P. S. Chakradhar, I. Ledoux-Rak, L. Badie, F. Pelle and S. Ivanova, J. Lumin., 129, 1375 (2009).
  8. T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari and J. Niittykoski, J. Alloys Compd., 341, 76 (2002).
  9. C. Zhao and D. Chen, Mater. Lett., 61, 3673 (2007).
  10. H. Ryu and K. S. Bartwal, Physica B, 403, 1843 (2008).
  11. I. Omkaram and S. Buddhudu, Opt. Mater., 32, 8 (2009).
  12. A. Rosendo, M. Flores, G. Cordoba, R. Rodriguez and R. Arroyo, Mater. Lett., 57, 2885 (2003).
  13. G. Wakefield, H. A. Keron, P. J. Dobson and J. L. Hutchison, J. Phys. Chem. Solids, 60, 503 (1999).
  14. X. Li, L. Guan, M. Sun, H. Liu, Z. Yang, Q. Guo and G. Fu, J. Lumin., 131, 1022 (2011).
  15. S. Cho, J. Korean Vac. Soc., 22, 79 (2013).
  16. C. H. Kam and S. Buddhudu, Mater. Lett., 54, 337 (2002).
  17. X. Ju, X. Li, W. Li, W. Yang and C. Tao, Mater. Lett., 65, 2642 (2011).
  18. P. Du, L. Song, J. Xiong, H. Cao, Z. Xi, S. Guo, N. Wang and J. Chen, J. Alloys. Compd., 540, 179 (2012).
  19. A. K. Bedyal, V. Kumar, R. Prakash, O. M. Ntwaeaborwa and H. C. Swart, Appl. Surf. Sci., 329, 40 (2015).
  20. N. Niu, P. Yang, W. Wang, F. He, S. Gai, D. Wang and J. Lin, Mater. Res. Bull., 46, 333 (2011).
  21. Z. H. Li, J. H. Zeng, G. C. Zhang and Y. D. Li, J. Solid State Chem., 178, 3624 (2005).
  22. S. Liu, Y. Liang, M. Tong, D. Yu, Y. Zhu, X. Wu and C. Yan, Mat. Sci. Semicon. Process., 38, 266 (2015).


Supported by : Silla University