Properties of Zeolite Nanopowder Coated with Titanium Dioxide by Atomic Layer Deposition

Lee, Bo Kyung;Ok, Hae Ryul;Bae, Hye Jin;Kim, Hyug Jong;Choi, Byung Ho

  • Received : 2015.12.30
  • Accepted : 2016.01.28
  • Published : 2016.03.27


Nanosized zeolites were prepared in an autoclave using tetraethoxysilane (TEOS), tetrapropylammonium hydroxide (TPAOH), and $H_2O$, at various hydrothermal synthesis temperatures. Using transmission electron microscopy and particle size analysis, the nanopowder particulate sizes were revealed to be 10-300 nm. X-ray diffraction analysis confirmed that the synthesized nanopowder was silicalite-1 zeolite. Using atomic layer deposition, the fabricated zeolite nanopowder particles were coated with nanoscale $TiO_2$ films. The $TiO_2$ films were prepared at $300^{\circ}C$ by using $Ti[N(CH_3)_2]_4$ and $H_2O$ as precursor and reactant gas, respectively. In the TEM analysis, the growth rate was ${\sim}0.7{\AA}/cycle$. Zeta potential and sedimentation test results indicated that, owing to the electrostatic repulsion between $TiO_2$-coated layers on the surface of the zeolite nanoparticles, the dispersibility of the coated nanoparticles was higher than that of the uncoated nanoparticles. In addition, the effect of the coated nanoparticles on the photodecomposition was studied for the irradiation time of 240 min; the concentration of methylene blue was found to decrease to 48%.


zeolite;atomic layer deposition;$TiO_2$;photodecomposition


  1. C.-Y. Hsu, A. S. T. Chiang, R. Selvin and R. W. Thompson, J. Phys. Chem. B., 109, 18804 (2005).
  2. R. Ravishankar, C. E. A. Kirschhock, P.-P. K.-Gerrits, E. J. P. Feijen, P. J. Grobet, P. Vanoppen, F. C. D. Schryver, G. Miehe, H. Fuess, B. J. Schoeman, P. A. Jacobs and J. A. Martens, J. Phys. Chem. B., 103, 4960 (1999).
  3. M. Vilaseca, J. Coronas, A. Cirera, A. Cornet, J. R. Morante and J. Santamaria, Catal. Today., 82, 179 (2003).
  4. A. Beganskiene, S. Sakirzanovas, I. Kazadojev, A. Melninkaitis, V. Sirutkaitis and A. Kareiva, Mater. Sci. (Poland), 25, 818 (2007).
  5. A. Shokuhfar, E. Eghdam and M. Alzamani, J. Nanosci. Nanotechnol., 2, 22 (2012).
  6. G. Wicht, R. Ferrini, S. Schuttel and L. Zuppiroli, Macromol. Mater. Eng., 295, 628 (2010).
  7. A. S. T. Chiang, L.-J. Wong, S.-Y. Li, S.-L. Cheng, C.-C. Lee, K.-L. Chen, S.-M. Chen and Y.-J. Lee, Stud. Surf. Sci. Catal., 170, 1583 (2007).
  8. H. S. Kim, H. J. Kim, Y. K. Jeong, S. H. Kim, S. W. Lee, B. K. Jeong, H. H. Lee and B. H. Choi, Solid State Phenom., 124, 375 (2007).
  9. H. J. Kim, H. G. Kim, I. G. Kang and B.H. Choi, J. Adv. Phys. Chem., 2011, 4 (2011).
  10. Q. Li, D. Creaser and J. Sterte, Microporous Mesoporous Mater., 31, 141 (1999).
  11. M. M. J. Treacy, J. B. Higgins, Collection of simulated XRD powder patterns for zeolites, (4th Eds.), Elsevier Science & Technology Books, Amsterdam - London -New York - Oxford - Paris - Shannon - Tokyo, 2001, p. 236-239.
  12. Y. Liu, C. Ge, M. Ren, H. Yin, A. Wang, D. Zhang, C. Liu, J. Chen, H. Feng, H. Yao and T. Jiang, Appl. Surf. Sci., 254, 2809 (2008).
  13. Y. Wang, J. Zhang, X. Shen, C. Shi, J. Wu and L. Sun, Mater. Chem. Phys. 98, 217 (2006).
  14. H. Tada, O. Nishio, N. Kubo, H. Matsui, M. Yoshihara, T. Kawahara, H. Fukui and S. Ito, J. Colloid Interface Sci., 306, 274 (2007).
  15. X. Xu, M. Oliveira and J. M. F. Ferreira, J. Colloid Interface. Sci., 259, 391 (2003).
  16. M. Sabzi, S. M. Mirabedini, J. Zohuriaan-Mehr and M. Atai, Prog. Org. Coat., 65, 222 (2009).
  17. H. Chang, C. Su, C.-H. Lo, L.-C. Chen, T.-T. Tsung and C.-S. Jwo, Mater. Trans., 45, 3334 (2004).


Supported by : Kumoh National Institute of Technology