Use of Processing Maps to Evaluate the Forming Condition during Ring Rolling

변형공정지도를 활용한 링롤링 공정 조건 평가

  • Received : 2015.03.04
  • Accepted : 2016.01.13
  • Published : 2016.02.01


The control of the roll velocities is essential in maintaining stability during ring rolling, but such control is difficult. The determination of the best roll velocities can be helped with the use of FE simulations and processing maps, which give the useful information such as power dissipation and flow instability for hot metal forming processes. In the current study, the workability of 7050 aluminum alloy is evaluated by using processing map. With the developed information, the stability of the ring rolling condition, called the Constant Growth Velocity Condition (CGVC), is evaluated.


Constant Growth Velocity Condition(CGVC) Model;Processing Map;Ring Rolling;Workability


  1. G. Zhou, L. Hua, D. Qian, H. Li, 2012, Effects of Axial Rolls Motions on Radial-axial Rolling Process for Large-scale Alloy Steel Ring with 3D Coupled Thermo-mechanical FEA, Int. J. Mech. Sci., Vol. 59, No. 1, pp. 1~7.
  2. J. T. Jinn, W. T. Wu, 2010, Proc. NUMIFORM Conf. (F. Barlat, Y. H. Moon, M. G. Lee eds.), Pohang, Korea, pp. 795~801.
  3. L. Guo, H. Yang, 2011, Towards a Steady Forming Condition for Radial-axial Ring Rolling, Int. J. Mech. Sci., Vol. 53, No. 4, pp. 286~299.
  4. L. Li, H. Yang, L. Guo, Z. Sun, 2008, A Control Method of Guide Rolls in 3D-FE Simulation of Ring Rolling, J. Mater. Process and Technol., Vol. 205, pp. 99~110.
  5. L. Hua, Z. Z. Zhao, 1997, The Extremum Parameters in Ring Rolling, J. Mater. Process. Technol., Vol. 69, pp. 273~276.
  6. H. J. Koh, Y. S. Lee, 2011, White Paper of Materials, Korea Institute of Materials Science, Changwon, Korea, pp. 417~440.
  7. J. T. Yeom, E. J. Jung, J. H. Kim, D. G. Lee, N. K. Park, S. S. Choi, C. S. Lee, 2006, Proc. Kor. Soc. Tech. Plast. Spring Conf., Kor. Soc. Tech. Plast., Seoul, Korea, pp. 373~376.
  8. G. P. Kang, S. Y. Lee, Y. H. Kim, S. S. Hong, S. H. Lee, 2012, Proc. Kor. Soc. Tech. Plast. Fall Conf., Kor. Soc. Tech. Plast., Seoul, Korea, pp. 261~264.
  9. F. L. Yan, L. Hua, Y. Q. Wu, 2007, Planning Feed Speed in Cold Ring Rolling, Int. J. Machine Tools & Manuf., Vol. 47, No. 11, pp. 1695~1701.
  10. W. Johnson, I. Macleod, G. Needham, 1968, An Experimental Investigation into the Process of Ring or Metal Tyre Rolling, Int. J. Mech. Sci., Vol. 10, No. 6, pp. 455~468.
  11. Y. V. R. K. Prasad, 2003, Processing Maps: A Status Report, J. Mater. Eng. Perform., Vol. 12, No. 6, pp. 638~645.
  12. R. Raj, 1981, Development of a Processing Map for use in Warm-forming and Hot Forming Processes, Metall. Trans. A, Vol. 12, No. 6, pp. 1089~1097.
  13. Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, J. C. Malas, J. T. Morgan, K. A. Lark, D. R. Barker, 1984, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, Vol. 15, No. 10, pp. 1883~1892.
  14. M. Awais, 2006, Finite Element Investigation of Instability in Hot Bar Rolling Process, Master's Thesis, KAIST, p. 107.
  15. J. Luo, M.Q. Li, B. Wu, 2011, The Correlation Between flow Behavior and Microstructural Evolution of 7050 Aluminum Alloy, Mater. Sci. Eng., A, Vol. 530, pp. 559~564.
  16. J. A. Bailey, 1972, Effect of Strain Rate and Temperature on the Resistance to Torsional Deformation of Several Aluminum Alloys, Int. J. Mech. Sci., Vol. 14, No. 11, pp. 735~754.
  17. P. Zhang, F. Li, Q. Wan, 2010, Constitutive Equation and Processing Map for Hot Deformation of SiC Particles Reinforced Metal Matrix Composites, J. Mater. Eng. Perform., Vol. 19, No. 9, pp. 1290~1297.
  18. DEFORM 3D Version 11.0 User's Manual