DOI QR코드

DOI QR Code

UNIFORMLY LIPSCHITZ STABILITY AND ASYMPTOTIC PROPERTY IN PERTURBED NONLINEAR DIFFERENTIAL SYSTEMS

CHOI, SANG IL;GOO, YOON HOE

  • Received : 2015.09.09
  • Accepted : 2016.01.27
  • Published : 2016.02.28

Abstract

This paper shows that the solutions to the perturbed differential system $y^{\prime}=f(t, y)+\int_{to}^{t}g(s,y(s),Ty(s))ds+h(t,y(t))$ have asymptotic property and uniform Lipschitz stability. To show these properties, we impose conditions on the perturbed part $\int_{to}^{t}g(s,y(s),Ty(s))ds+h(t,y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y).

Keywords

uniformly Lipschitz stability;uniformly Lipschitz stability in variation;exponentially asymptotic stability;exponentially asymptotic stability in variation

References

  1. V.M. Alekseev: An estimate for the perturbations of the solutions of ordinary differential equations.Vestn. Mosk. Univ. Ser. I. Math. Mekh. 2 (1961), 28-36(Russian).
  2. F. Brauer: Perturbations of nonlinear systems of differential equations.J. Math. Anal. Appl. 14 (1966), 198-206. https://doi.org/10.1016/0022-247X(66)90021-7
  3. S.I. Choi & Y.H. Goo: Lipschitz and asymptotic stability for nonlinear perturbed differential systems. J. Chungcheong Math. Soc. 27 (2014)
  4. S.I. Choi & Y.H. Goo: Boundedness in perturbed nonlinear functional differential systems. J. Chungcheong Math. Soc. 28 (2015), 217-228. https://doi.org/10.14403/jcms.2015.28.2.217
  5. S.I. Choi & Y.H. Goo : Lipschitz and asymptotic stability of nonlinear systems of perturbed differential equations. Korean J. Math. 23 (2015), 181-197. https://doi.org/10.11568/kjm.2015.23.1.181
  6. S.K. Choi, Y.H. Goo & N.J. Koo: Lipschitz and exponential asymptotic stability fornonlinear functional systems. Dynamic Systems and Applications 6 (1997), 397-410.
  7. S.K. Choi , N.J. Koo & S.M. Song: Lipschitz stability for nonlinear functional differential systems. Far East J. Math. Sci(FJMS) 5 (1999), 689-708.
  8. F.M. Dannan & S. Elaydi: Lipschitz stability of nonlinear systems of differential systems. J. Math. Anal. Appl. 113 (1986), 562-577. https://doi.org/10.1016/0022-247X(86)90325-2
  9. S. Elaydi & H.R. Farran: Exponentially asymptotically stable dynamical systems. Appl. Anal. 25 (1987), 243-252. https://doi.org/10.1080/00036818708839688
  10. P. Gonzalez and M. Pinto: Stability properties of the solutions of the nonlinear functional differential systems.J. Math. Appl. 181(1994), 562-573.
  11. Y.H. Goo: Lipschitz and asymptotic stability for perturbed nonlinear differential systems. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 21 (2014), 11-21.
  12. Y.H. Goo: Perturbations in nonlinear perturbed differential systems. Far East J. Math. Sci(FJMS) 98 (2015), 671-687. https://doi.org/10.17654/FJMSNov2015_671_687
  13. D.M. Im & Y.H. Goo: Asymptotic property for perturbed nonlinear functional differential systems. J. Appl. Math. and Informatics 33 (2015), 687-697. https://doi.org/10.14317/jami.2015.687
  14. V. Lakshmikantham & S. Leela: Differential and Integral Inequalities: Theory and Applications Vol. I. Academic Press, New York and London, 1969.
  15. B.G. Pachpatte: Stability and asymptotic behavior of perturbed nonlinear systems. J. Math. Anal. Appl. 16 (1974), 14-25.
  16. B.G. Pachpatte: Perturbations of nonlinear systems of differential equations. J. Math. Anal. Appl. 51 (1975), 550-556. https://doi.org/10.1016/0022-247X(75)90106-7