DOI QR코드

DOI QR Code

ON TRACE FORMS OF GALOIS EXTENSIONS

  • Received : 2016.01.09
  • Accepted : 2016.01.16
  • Published : 2016.02.28

Abstract

Let G be a finite group containing a non-abelian Sylow 2-subgroup. We elementarily show that every G-Galois field extension L/K has a hyperbolic trace form in the presence of root of unity.

Keywords

trace forms;quadratic forms;hyperbolic;field extension;Galois extension

References

  1. E. Bayer-Fluckiger: Galois cohomology and the trace form. Jahresber. Deutch. Math.-Verein. 96 (1994), no. 2, 35-55.
  2. E. Bayer-Fluckiger & H.W. Lenstar Jr.: Forms in odd degree extensions and self-dual normal bases. Amer. J. Math. 112 (1990), no. 3, 359-373. https://doi.org/10.2307/2374746
  3. E. Bayer-Fluckiger & J.-P. Serre: Torsions quadratiques et bases normales autoduales. Amer. J. Math. 116 (1994), 1-64. https://doi.org/10.2307/2374981
  4. C. Drees, M. Epkenhans, M. Krüskemper: On the computation of the trace form of some Galois extensions. J. Algebra 192 (1997), 209-234. https://doi.org/10.1006/jabr.1996.6939
  5. C. Hermite: Extrait d’une lette de Mr. ch. Hermite de paris à Mr. Borchardt de Berlin sur le nombre des racines d’une équation algébrique comprises entre des limites données. J. Reine angew. Math. 52 (1856), 39-51.
  6. C. Hermite: Extrait d'une lettre des M.C. Hermite à M. Borchardt sur l'invariabilité du nombres des carrés positifs et des carrés négatifs dans la transformation des polynômes homogères du second degré. J. Reine angew. Math. 53 (1857), 271-274.
  7. C.G. Jacobi: Uber einen algebraischen Fundamentalsatz und seine Anwendungen (Aus den hinterlassenen Papieren von C.G. J. Jacobi migethelt durch C. W. Borchardt). J. Reine angew. Math. 53 (1857), 275-280.
  8. D.-S. Kang & Z. Reichstein: Trace forms of Galois field extensions in the presence of roots of unity. J. Reine angew. Math. 549 (2002), 79-89.
  9. J. Mináč & Z. Reichstein: Trace forms of Galois extensions in the presence of a fourth root of unity. Int. Math. Research Notices 8 (2004) 389-410
  10. L. Rédei: Das schiefe Produkt in der Gruppentheorie. Comment. Math. Helvet. 20 (1947), 225-267. https://doi.org/10.1007/BF02568131
  11. D.J.S. Robinson: A Course in the Theory of Groups. second edition, Springer-Verlag, New York, 1996.
  12. W.R. Scott: Group Theory. Dover Publications, Inc., 1987.
  13. J.-P. Serre: L’invariant de Witt de la forme Tr(x2). Comm. Math. Helv. 59 (1984), 651-676. https://doi.org/10.1007/BF02566371
  14. S. Sylvester: On the theory of syzygetic relations integral functions, comprising an application to the theory of Sturm’s functions, and that of the greatest algebraic common measure. Phil. Trans. of the Royal Society of London 148 (1853), 407-548.