DOI QR코드

DOI QR Code

운동과 뇌신경가소성: 고강도 인터벌 운동의 효과성 고찰

황지선;김태영;황문현;이원준
Hwang, Ji Sun;Kim, Tae Young;Hwang, Moon-Hyon;Lee, Won Jun

  • 투고 : 2015.05.15
  • 심사 : 2015.06.24
  • 발행 : 2016.01.30

초록

운동은 중추와 말초의 각종 성장인자(BDNF, IGF-1, VEGF)들의 상호작용에 의해 뇌신경가소성을 증진시키고 인지기능을 향상시킨다. 지금까지 저·중강도 지속성 유산소 운동의 효과를 검증하는 선행연구가 주로 이루어졌기 때문에 고강도 운동에 따른 뇌신경성장인자의 발현 및 인지기능 개선 효과에 대한 연구는 미흡한 실정이다. 하지만 최근의 과학적 증거들은 고강도 인터벌 운동이 시간 효율성, 안전성, 심폐지구력 개선 및 체중 감소에 효과적임을 암시하고 있으며, 미스포츠의학회(ACSM)에서 권장하는 일반인을 위한 운동지침에서도 무리가 되지 않는 수준에서 고강도 인터벌 운동 수행을 강조하고 있다. 특히 최근에 발표된 선행 연구에서 고강도 인터벌 운동은 말초조직과 뇌에서의 BDNF, IGF-1, VEGF의 발현을 증가시키고 그로 인한 인지기능 발달에 기여한다는 것을 보고하였으며, 관련된 유력한 생리학적 기전으로 고강도 인터벌 운동으로 인한 뇌의 저산소화와 뇌신경대사의 부가적인 에너지원이 될 수 있는 젖산 이용성 증가가 대두되고 있다. 따라서 향후 저산소화 및 젖산 이용성 증가에 따른 뇌신경성장인자 발현 개선에 어떤 분자생물학적 기전이 관여하는지를 탐구할 필요가 있으며, 또한 동일한 운동량을 가진 저·중강도 지속성 유산소 운동과의 비교 연구를 통해 뇌신경성장인자의 발현 및 인지기능 개선에 있어 고강도 인터벌 운동의 우수성을 입증하는 연구가 요구된다.

키워드

Cognitive function;high-intensity interval exercise;hypoxia;lactate;neurotrofic factors

참고문헌

  1. Afzalphuor, M. E., Chadorneshin, H. T., Foadoddini, M. and Eivari, H. A. 2015. Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain. Physiol. Behav. 147, 78-83. https://doi.org/10.1016/j.physbeh.2015.04.012
  2. Barbieri, M., Ferrucci, L., Ragno, E., Corsi, A., Bandinelli, S., Bonafe, M., Olivieri, F., Giovagnetti, S., Franceschi, C., Guralnik, J. M. and Paolisso, G. 2003. Chronic Inflammation and the effect of IGF-1 on muscle strength and power in older persons. Am. J. Physiol. Endocrinol. Metab. 284, E481-E487. https://doi.org/10.1152/ajpendo.00319.2002
  3. Berchtold, N. C., Chinn, G., Chou, M., Kesslak, J. P. and Cotman, C. W. 2005. Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience 133, 853-861. https://doi.org/10.1016/j.neuroscience.2005.03.026
  4. Bergersen, L. H. 2007. Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 145, 11-19. https://doi.org/10.1016/j.neuroscience.2006.11.062
  5. Brunelli, A., Dimauro, I., Sgro, P., Emerenziani, G. P., Magi, F., Baldari, C., Guidetti, L., Luigi, L. D., Parisi, P. and Caporossi, D. 2012. Acute exercise modulates BDNF and pro-BDNF protein content in immune cells. Med. Sci. Sports Exerc. 44, 1871-1880. https://doi.org/10.1249/MSS.0b013e31825ab69b
  6. Cappon, J., Brasel, J. A., Mohan, S. and Cooper, D. M. 1994. Effect of brief exercise on circulating insulin-like growth factor I. J. Appl. Physiol. 76, 2490-2496. https://doi.org/10.1063/1.357607
  7. Carro, E., Nunez, A., Busiguina, S. and Torres-Aleman, I. 2000. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 20, 2926-2933.
  8. Cassiman, D., Denef, C., Desmet, V. J. and Roskams, T. 2001. Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors. Hepatology 33, 148-158. https://doi.org/10.1053/jhep.2001.20793
  9. Cetinkaya, C., Sisman, A. R., Kiray, M., Camsari, U. M., Gencoglu, C., Baykara, B., Aksu, I. and Uysal, N. 2013. Positive effects of aerobic exercise on learning and memory functioning, which correlate with hippocampal IGF-1 increase in adolescent rats. Neurosci. Lett. 549, 177-181. https://doi.org/10.1016/j.neulet.2013.06.012
  10. Coco, M., Alagona, G., Rapisarda, G., Costanzo, E., Calogero, R. A. and Perciavalle, V. 2010. Elevated blood lactate is associated with increased motor cortex excitability. Somatosens Mot. Res. 27, 1-8. https://doi.org/10.3109/08990220903471765
  11. Dery, N., Pilgrim, M., Gibala, M., Gillen, J. and Wojtowicz, J. M. 2013. Adult hippocampal neurogenesis reduces memory interference in humans: opposing effects of aerobic exercise and depression. Front. Neurosci. 7, 66.
  12. Colier, W. N., Quaresima, V., Oeseburg, B. and Ferrari, M. 1999. Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot. Exp. Brain. Res. 129, 457-461. https://doi.org/10.1007/s002210050913
  13. Cotman, C. W. and Berchtold, N. C. 2002. Exercise: a behavioral intervention to enhance brain health and plasticity. Trend. Neurosci. 25, 295-301. https://doi.org/10.1016/S0166-2236(02)02143-4
  14. Cotman, C. W., Berchtold, N. C. and Christie, L. A. 2007. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464-472. https://doi.org/10.1016/j.tins.2007.06.011
  15. DeVol, D. L., Rotwein, P., Sadow, J. L., Novakofski, J. and Bechtel, P. J. 1990. Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am. J. Physiol. 259, E89-E95.
  16. Ding, Q., Vaynman, S., Akhavan, M., Ying, Z. and Gomez-Pinilla, F. 2006. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140, 823-833. https://doi.org/10.1016/j.neuroscience.2006.02.084
  17. Erickson, K. I. and Kramer, A. F. 2009. Aerobic exercise effects on cognitive and neural plasticity in older adults. Br. J. Sports Med. 43, 22-24.
  18. Borst, S. E., De Hoyos, D. V., Garzarella, L., Vincent, K., Pollock, B. H., Lowenthal, D. T. and Pollock, M. L. 2001. Effects of resistance training on insulin-like growth factor-I and IGF binding proteins. Med. Sci. Sports. Exerc. 33, 648-653.
  19. Breen, E. C., Johnson, E. C., Wagner, H. M., Tseng, M., Sung, L. A., and Wagner, P. D. 1996. Angiogenic growth factor mRNA responses in muscle to a single bout of exercise. J. Appl. Physiol. 81, 355-361.
  20. Gregory, S. M., Spiering B. A., Alemany, J. A., Tuckow, A. P., Rarick, K. R., Staab, J. S., Hatfield, D. L., Kraemer, W. J., Maresh, C. M. and Nindl, B. C. 2013. Exercise-induced insulin-like growth factor I system concentrations after training in women. Med. Sci. Sports Exerc. 45, 420-428. https://doi.org/10.1249/MSS.0b013e3182750bd4
  21. Ferris, L. T., Williams, J. S. and Shen, C. L. 2007. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med. Sci. Sports Exerc. 39, 728-734. https://doi.org/10.1249/mss.0b013e31802f04c7
  22. Gavin, T. P. and Wager, P. D. 2001. Effect of short-term exercise training on angiogenic growth factor gene responses in rats. J. Appl. Physiol. 90, 1219-1226. https://doi.org/10.1152/jappl.2001.90.4.1219
  23. Greer, B. K., Sirithienthad, P., Moffatt, R. J., Marcello, R. T. and Panton, L. B. 2015. EPOC comparison between isocaloric bouts of steady-state aerobic, intermittent aerobic, and resistance training. Res. Q. Exerc. Sport. 86, 190-195. https://doi.org/10.1080/02701367.2014.999190
  24. Griffin, E. W., Mullally, S., Foley, C., Warmington, S. A., O’Mara, S. M. and Kelly, A. M. 2011. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol. Behav. 104. 934-941. https://doi.org/10.1016/j.physbeh.2011.06.005
  25. Gustafsson, T., Adrian, P., Lennart, K., Eva, J. and Carl, J. S. 1999. Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am. J. Physiol. 276, H679-H685.
  26. Colcombe, S. and Kramer, A. F. 2003. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14, 125-130. https://doi.org/10.1111/1467-9280.t01-1-01430
  27. Colcombe, S. J., Erickson, K. I., Scalf, P. E., and Kim, J. S., Prakash, R., McAuley, E., Elavsky, S., Marquez, D. X., Hu, L. and Kramer, A. F. 2006. Aerobic exercise training increases brain volume in aging humans. J. Gerontol. A. Biol. Sci. Med. Sci. 61, 1166-1170. https://doi.org/10.1093/gerona/61.11.1166
  28. Ide, K., Horn, A. and Secher, N. H. 1999. Cerebral metabolic response to submaximal exercise. J. Appl. Physiol. 87, 1604-1608.
  29. Hoppeler, H. and Vogt, M. 2001. Hypoxia training for sea-level performance. Training high-living low. Adv. Exp. Med. Biol. 502, 61-73. https://doi.org/10.1007/978-1-4757-3401-0_6
  30. Hotting, K. and Roder, B. 2013. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci. Biobehav. Rev. 37, 2243-2257. https://doi.org/10.1016/j.neubiorev.2013.04.005
  31. Huang, T., Larsen, K. T., Ried-Larsen, M., Moller, N. C. and Andersen, L. B. 2014. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scand. J. Med. Sci. Sports 24, 1-10.
  32. Juel, C., Klarskov, C., Nielsen, J. J., Krustrup, P., Mohr, M. and Bangsbo, J. 2003. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 286, E245-E251. https://doi.org/10.1152/ajpendo.00303.2003
  33. Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., Chason, J., Vakil, E., Bardell, L., Boileau, R. A. and Colcombe, A. 1999. Ageing, fitness and neurocognitive function. Nature 400, 418-419. https://doi.org/10.1038/22682
  34. Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E. and Kramer, A. F. 2011. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 108, 3017-3022. https://doi.org/10.1073/pnas.1015950108
  35. Hofer, M. M. and Barde, Y. A. 1988. Brain-derived neurotrophic factor prevents neuronal death in vivo. Nature 331, 261-262. https://doi.org/10.1038/331261a0
  36. Hoier, B. and Hellsten, Y. 2014. Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation 21, 301-314. https://doi.org/10.1111/micc.12117
  37. Monteggia, L. M., Barrot, M., Powell, C. M., Berton, O., Galanis, V., Gemelli, T., Meuth, S., Nagy, A., Greene, R. W. and Nestler, E. J. 2004. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc. Natl. Acad. Sci. USA 101, 10827-10832. https://doi.org/10.1073/pnas.0402141101
  38. Lopez-Lopez, C., LeRoith, D. and Torres-Aleman, I. 2004. Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc. Natl. Acad. Sci. USA 101, 9833-9838. https://doi.org/10.1073/pnas.0400337101
  39. Lou, S. J., Liu, J. Y., Chang, H. and Chen, P. J. 2008. Hippocampal neurogenesis and gene expression depend on exercise intensity in juvenile rats. Brain Res. 1210, 48-55. https://doi.org/10.1016/j.brainres.2008.02.080
  40. Maren, S. K., Sarah, S., Sascha, O., Christian, T., Alexandra, D., Jorn, L. and Jochen, K. 2012. Kinetics of serum brain-derived neurotrophic factor following low-intensity versus high-intensity exercise in men and women. Neuroreport 23, 889-893. https://doi.org/10.1097/WNR.0b013e32835946ca
  41. Neeper, S. A., Gomez-Pinilla, F., Choi, J. and Cotman, C. 1995. Exercise and brain neurotrophins. Nature 373, 109. https://doi.org/10.1038/373109a0
  42. Pareja-Galeano, H., Brioche, T., Sanchis-Gomar, F., Montal, A., Jovani, C., Martinez-Costa, C., Gomez-Cabrera, M. C. and Vina, J. 2013. Impact of exercise training on neuroplasticity-related growth factors in adolescents. J. Musculoskelet. Neuronal Interact. 13, 368-371.
  43. Paul, D. L., Skyla. M. H., Bradley. J. C. and Timothy, D. N. 2013. Physical activity and the brain: A review of this dynamic, bi-directional relationship. Brain Res. 1539, 95-104. https://doi.org/10.1016/j.brainres.2013.10.004
  44. Haskell, W. L., Lee, I. M., Rate, R. R., Powell, K. E., Blair, S. N., Franklin, B. A., Macera, C. A., Heath, G. W., Thompson, P. D. and Bauman, A. 2007. Physical activity and public health: updated recommendation for adults from American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 39, 1423-1434. https://doi.org/10.1249/mss.0b013e3180616b27
  45. Quistorff, B., Secher, N. H. and van Leishout, J. J. 2008. Lactate fuels the human brain during exercise. FASEB J. 22, 3443-3449. https://doi.org/10.1096/fj.08-106104
  46. Phillips, C., Baktir, M. A., Srivatsan, M. and Salehi, A. 2014. Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Fornt. Cell Neurosci. 170, 1-15.
  47. Pilegaard, H., Domino, K., Noland, T., Juel, C., Hellsten, Y., Halestrap, A. P. and Bangsbo, J. 1999. Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle. Am. J. Physiol. 276, E255-261.
  48. Poo, M. M. 2001. Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 24-32. https://doi.org/10.1038/35049004
  49. Rasmussen, P., Brassard, P., Adser, H., Pedersen, M. V., Leick, L., Hart, E., Secher, N. H., Pedersen, B. K. and Pilegaard, H. 2009. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. Physiol. 94, 1062-1069. https://doi.org/10.1113/expphysiol.2009.048512
  50. Rasmussen, P., Wyss, M. T. and Lundby, C. 2011. Cerebral glucose and lactate consumption during cerebral activation by physical activity in humans. FASEB J. 25, 2865-2873. https://doi.org/10.1096/fj.11-183822
  51. Ratey, J. J. and Loehr, J. E. 2011. The positive impact of physical activity on cognition during adulthood: a review of underlying mechanisms, evidence and recommendations. Rev. Neurosci. 22, 171-185.
  52. Larrebee, M. G. 1995. Lactate metabolism and its effects on glucose metabolism in an exercised neural tissue. J. Neurochem. 64, 1734-1741.
  53. Lezi, E., Burns, J. M. and Swerdlow, R. H. 2014. Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation. Neurobiol. Aging. 35, 2574-2583. https://doi.org/10.1016/j.neurobiolaging.2014.05.033
  54. Skriver, K., Roig, M., Lundbye-Jensen, J., Pingel, J., Helge, J. W., Kiens, B. and Nielsen, J. B. 2014. Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiol. Learn. Mem. 116, 46-58. https://doi.org/10.1016/j.nlm.2014.08.004
  55. Ruscheweyh, R., Willemer, C., Kruger, K., Duning, T., Warnecke, T., Sommer, J., Volker K., Ho, H. W., Mooren, F., Knecht, S. and Floel, A. 2011. Physical activity and memory functions: and interventional study. Neurociol. Aging 32, 1304-1319. https://doi.org/10.1016/j.neurobiolaging.2009.08.001
  56. Schiffer, T., Schulte, S., Sperlich, B., Achtzehn, S., Fricke, H. and Struder, H. K. 2011. Lactate infusion at rest increases BDNF blood concentration in humans. Neurosci. Lett. 488, 234-237. https://doi.org/10.1016/j.neulet.2010.11.035
  57. Schwartz, A. J., Brasel, J. A., Hintz, R. L., Mohan, S. and Cooper, D. M. 1996. Effect of brief low- and high-intensity exercise on circulating insulin-like growth factor (IGF) I, II, and IGF-binding protein-3 and its proteolysis in young healthy men. J. Clin. Endocrinol. Metab. 81, 3492-3497.
  58. Sonntag, W. E., Ramsey, M. and Carter, C. S. 2005. Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res. Rev. 4, 195-212. https://doi.org/10.1016/j.arr.2005.02.001
  59. Suzuki, J., Gai, M., Batra, S. and MUsch, T. 1997. Effects of treadmill training on the arteriolar and venular portions of capillary in soleus muscle of young and middle-aged rats. Acta. Physiol. Scand. 159, 113-121. https://doi.org/10.1046/j.1365-201X.1997.582353000.x
  60. RojasVega, S., Struder, H. K., Vera Wahrmann, B., Schmidt, A., Bloch, W. and Hollmann, W. 2006. Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Res. 1121, 59-65. https://doi.org/10.1016/j.brainres.2006.08.105
  61. Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosnuov, A. A., Hen, R., McKhann, G. M., Sloan, R., Gage, F. H., Brown, T. R. and Small, S. A. 2007. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. USA 104, 5638-5643. https://doi.org/10.1073/pnas.0611721104
  62. Tsai, C. L., Wang, C. H., Pan, C. Y., Chen, F. C., Huang, T. H. and Chou, F. Y. 2014. Executive function and endocrinological responses to acute resistance exercise. Front. Behav. Neurosci. 8, 262.
  63. Timmons, J. A., Jansson, E., Fischer, H., Gustafsson, T., Greenhaff, P. L., Ridden, J., Rachman, J. and Sundberg, C. J. 2005. Modulation of extracellular matrix genes reflects the magnitude of physiological adaptation to aerobic exercise training in humans. BMC Biol. 3, 19. https://doi.org/10.1186/1741-7007-3-19
  64. Tonoli, C., Heyman, E., Buyse, L., Roelands, B., Piacentini, M. F., Bailey, S., Pattyn, N., Berthoin, S. and Meeusen, R. 2015. Neurotrophins and cognitive functions in T1D compared with healthy controls: effects of a high intensity exercise. Appl. Physiol. Nutr. Metab. 40, 20-27. https://doi.org/10.1139/apnm-2014-0098
  65. Trejo, J. L., Carro, E. and Torres-Aleman, I. 2001, Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21, 1628-1634. https://doi.org/10.1523/JNEUROSCI.21-05-01628.2001
  66. Vayman, S., Ying, Z. and Gomez-Pinilla, F. 2004. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20, 2580-2590. https://doi.org/10.1111/j.1460-9568.2004.03720.x
  67. Voss, M. W., Erickson, K. I., Prakash, R. S., Chaddock, L., Kim, J. S., Alves, H., Szabo, A., Phillips, S. M., Wojcicki, T. R., Mailey, E. L., Olson, E. A., Gothe, N., Vieira-Potter, V. J., Martin, S. A., Pence, B. C., Cook, M. D., Woods, J. A., McAuley, E. and Kramer, A. F. 2013. Neurobiologycal markers of exercise-related brain plasticity in older adults. Brain Behav. Immun. 28, 90-99. https://doi.org/10.1016/j.bbi.2012.10.021
  68. Rooks, C. R., Thom. N. J., McCully, K. K. and Dishman, R. K. 2010. Effects of incremental exercise on cerebral oxygenation measured by near-infared spectroscopy: A systematic review. Prog. Neurobiol. 92, 134-150 https://doi.org/10.1016/j.pneurobio.2010.06.002
  69. Wahl, P., Zinner, C., Achtzehn, S., Bloch, W. and Mester, J. 2010. Effect of high- and low-intensity exercise and metabolic acidosis on levels of GH, IGF-I, IGFBP-3 and cortisol. Growth Horm. IGF Res. 5, 380-385.
  70. Wagner P. D., Olfert, I. M., Tang, K. and Breen, E. C. 2006. Muscle-targeted deletion of VEGF and exercise capacity in mice. Respir. Physiol. Neurobiol. 151, 159-166. https://doi.org/10.1016/j.resp.2005.09.007
  71. Wahl, P., Mathes, S., Achtzehn, S., Bloch, W. and Mester, J. 2014. Active vs. passive recovery during high-intensity training influences hormonal response. Int. J. Sport Med. 35, 583-589.
  72. Wahl, P., Zinner, C., Achtzehn, S., Behringer, M., Bloch, W. and Mester, J. 2011. Effects of acid-base balance and high or low intensity exercise on VEGF and bFGF. Eur. J. Appl. Physiol. 111, 1405-1413. https://doi.org/10.1007/s00421-010-1767-1
  73. Wang, H., Ward, N., Boswell, M. and Katz, D. M. 2006. Secretion of brain-derived neurotrophic factor from brain microvascular endothelial cells. Eur. J. Neurosci. 23, 1665-1670. https://doi.org/10.1111/j.1460-9568.2006.04682.x
  74. Whiteman, A. S., Young, D. E., He, X., Chen, T. C. and Wagenaar, R. C. 2014. Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults. Behav. Brain Res. 259, 302-312. https://doi.org/10.1016/j.bbr.2013.11.023
  75. Winter, B., Breitenstein, C., Mooren, F. C., Voelker, K., Fobker, M., Lechtermann, A., Krueger, K., Fromme, A., Korsukewitz, C., Floel, A. and Knecht, S. 2007. High impact running improves learning. Neurobiol. Learn Mem. 87, 597-609. https://doi.org/10.1016/j.nlm.2006.11.003
  76. Wyss, M. T., Jolivet, R., Buck, A., Magistretti, P. J. and Weber, B. 2011. In vivo evidence for lactate as a neuronal energy source. J. Neurosci. 31, 7477-7485. https://doi.org/10.1523/JNEUROSCI.0415-11.2011
  77. Tang, K., Xia, F. C., Wagner, P. D. and Breen, E. C. 2010. Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respir. Physiol. Neurobiol. 170, 16-22. https://doi.org/10.1016/j.resp.2009.10.007
  78. Yang, J., Ruchti, E., Petit, J. M., Jourdain, P., Grenningloh, G., Allaman, I. and Magistretti, P. J. 2014. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc. Natl. Acad. Sci. 111, 12228-12233. https://doi.org/10.1073/pnas.1322912111
  79. Zanconato, S., Moromisato, D. Y., Moromisato, M. Y., Woods, J., Brasel, J. A., Leroith, D., Roberts, C. T. and Cooper, C. M. 1994. Effect of training and growth hormone suppression on insulin-like growth factor I mRNA in young rats. J. Appl. Physiol. 76, 2204-2209. https://doi.org/10.1152/jappl.1994.76.5.2204
  80. Zoladz, J. A., Pilic, A., Majerczak, J., Grandys, M., Zapart-Bukowska, J. and Duda, K. 2008. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J. Physiol. Pharmacol. 59, 119-132.