DOI QR코드

DOI QR Code

인핸서 RNA에 의한 유전자 전사 조절

김예운;김애리
Kim, Yea Woon;Kim, AeRi

  • 투고 : 2015.06.30
  • 심사 : 2015.08.31
  • 발행 : 2016.01.30

초록

다세포 생물의 유전자들은 발생 및 분화 그리고 조직 특이적으로 전사되며, 이러한 유전자 전사는 게놈 상에서 멀리 떨어져 존재하는 인핸서(enhancer) 부위에 의해 조절된다. 최근의 연구들은 활성화된 인핸서에서 RNA Polymerase II (Pol II)에 의해 noncoding RNA가 전사된다고 보고하고 있으며, 이들은 인핸서 RNA (eRNA)라 불리고 있다. eRNA는 인핸서 중심으로부터 양방향으로 합성되며, 5’ capping은 일어나지만, splicing이나 3’ tailing은 되지 않는다. eRNA의 전사는 전사 활성자의 결합에 의해 일어나며, 표적 유전자의 전사 수준과 비례하게 일어난다. 인위적으로 eRNA의 전사를 억제하거나 합성된 eRNA를 제거하면 표적 유전자의 전사는 억제된다. eRNA의 전사 과정은 인핸서 부분의 활성 히스톤 변형을 유도하며, 합성된 eRNA는 인핸서와 프로모터 사이의 크로마틴 고리 구조 형성을 매개한다. 또한 표적 유전자의 프로모터에 RNA Pol II를 모집하고 이들의 신장을 촉진하는 것도 eRNA의 역할로 보인다. 본 총설은 인핸서 유래 eRNA의 특징에 대해 살펴보고, eRNA의 합성 기작 및 표적 유전자의 전사 조절을 위한 eRNA의 역할을 정리해보고자 한다.

키워드

Enhancer;eRNAs;gene transcription

참고문헌

  1. Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F. and et. al. 2012. Landscape of transcription in human cells. Nature 489, 101-108. https://doi.org/10.1038/nature11233
  2. Ashe, H. L., Monks, J., Wijgerde, M., Fraser, P. and Proud-foot, N. J. 1997. Intergenic transcription and transinduction of the human β-globin locus. Genes Dev. 11, 2494-2509. https://doi.org/10.1101/gad.11.19.2494
  3. Bulger, M. and Groudine, M. 2011. Functional and mechanistic diversity of distal transcription enhancers. Cell 144, 327-339. https://doi.org/10.1016/j.cell.2011.01.024
  4. De Santa, F., Barozzi, I., Mietton, F., Ghisletti, S., Polletti S., Tusi, B. K., Muller, H., Ragoussis, J., Wei, C. L. and Natoli, G. 2010. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 8, e1000384. https://doi.org/10.1371/journal.pbio.1000384
  5. Hah, N., Murakami, S., Nagari, A., Danko, C. G. and Kraus, W. L. 2013. Enhancer transcripts mark active estrogen receptor binding sites. Genome Res. 23, 1210-1223. https://doi.org/10.1101/gr.152306.112
  6. Johnson, K. D., Grass, J. A., Park, C., Im, H., Choi, K. and Bresnick, E. H. 2003. Highly restricted localization of RNA polymerase II within a locus control region of a tissue-specific chromatin domain. Mol. Cell. Biol. 23, 6484-6493. https://doi.org/10.1128/MCB.23.18.6484-6493.2003
  7. Heintzman, N. D., Stuart, R. K., Hon, G., Fu, Y., Ching, C. W., Hawkins, R. D., Barrera, L. O., Van Calcar, S., Qu, C., Ching, K. A., Wang, W., Weng, Z., Green, R. D., Crawford, G. E. and Ren, B. 2007. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311-318. https://doi.org/10.1038/ng1966
  8. Hsieh, C. L., Fei, T., Chen, Y., Li, T., Gao, Y., Wang, X., Sun, T., Sweeney, C. J., Lee, G. S., Chen, S., Balk, S. P., Liu, X. S., Brown, M. and Kantoff, P. W. 2014. Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc. Natl. Acad. Sci. USA 111, 7319-7324. https://doi.org/10.1073/pnas.1324151111
  9. IIott, N. E., Heward, J. A., Roux, B., Tsitsiou, E., Fenwick, P. S., Lenzi, L., Goodhead, I., Hertz-Fowler, C., Heger, A., Hall, N., Donnelly, L. E., Sims, D. and Lindsay, M. A. 2014. Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nat. Commun. 5, 3979.
  10. Kaikkonen, M. U., Spann, N. J., Heinz, S., Romanoski, C. E., Allison, K. A., Stender, J. D., Chun, H. B., Tough, D. F., Prinjha, R. K., Benner, C. and Glass, C. K. 2013. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol. Cell 51, 310-325. https://doi.org/10.1016/j.molcel.2013.07.010
  11. Kanno, T., Kanno, Y., LeRoy, G., Campos, E., Sun, H. W., Brooks, S. R., Vahedi, G., Heightman, T. D., Garcia, B. A., Reinberg, D., Siebenlist, U., O’Shea, J. J. and Ozato, K. 2014. BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nat. Struct. Mol. Biol. 21, 1047-1057. https://doi.org/10.1038/nsmb.2912
  12. Lai, F., Orom, U. A., Cesaroni, M., Beringer, M., Taatjes, D. J., Blobel, G. A. and Shiekhattar, R. 2013. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494, 497-501. https://doi.org/10.1038/nature11884
  13. Kim, T. K., Hemberg, M., Gray, J. M., Costa, A. M., Bear, D. M., Wu, J., Harmin, D. A., Laptewicz, M., Barbara-Haley, K., Kuersten, S., Markenscoff-Papadimitriou, E., Kuhl, D., Bito, H., Worley, P. F., Kreiman, G. and Greenberg, M. E. 2010. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182-187. https://doi.org/10.1038/nature09033
  14. Kim, Y. W., Lee, S., Yun, J. and Kim, A. 2015. Chromatin looping and eRNA transcription precede the transcriptional activation of gene in the β-globin locus. Biosci. Rep. 35, e00179.
  15. Léveillé, N., Melo, C. A., Rooijers, K., Díaz-Lagares, A., Melo, S. A., Korkmaz, G., Lopes, R., Akbari Moqadam, F., Maia, A. R., Wijchers, P. J., Geeven, G., den Boer, M. L., Kalluri, R., de Laat, W., Esteller, M. and Agami, R. 2015. Genome-wide profiling of p53-regulated enhancer RNAs uncovers a subset of enhancers controlled by a lncRNA. Nat. Commun. 6, 6520. https://doi.org/10.1038/ncomms7520
  16. Lam, M. T., Cho, H., Lesch, H. P., Gosselin, D., Heinz, S., Tanaka-Oishi, Y., Benner, C., Kaikkonen, M. U., Kim, A. S., Kosaka, M., Lee, C. Y., Watt, A., Grossman, T. R., Rosenfeld, M. G., Evans, R. M. and Glass, C. K. 2013. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498, 511-515. https://doi.org/10.1038/nature12209
  17. Kim, K. and Kim, A. 2010. Sequential changes in chromatin structure during transcriptional activation in the β-globin LCR and its target gene. Int. J. Biochem. Cell Biol. 42, 1517-1524. https://doi.org/10.1016/j.biocel.2010.05.009
  18. Mousavi, K., Zare, H., Dell'orso, S., Grontved, L., Gutierrez-Cruz, G., Derfoul, A., Hager, G. L. and Sartorelli, V. 2013. eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol. Cell 51, 606-617. https://doi.org/10.1016/j.molcel.2013.07.022
  19. Li, W., Notani, D., Ma, Q., Tanasa, B., Nunez, E., Chen, A. Y., Merkurjev, D., Zhang, J., Ohgi, K., Song, X., Oh, S., Kim, H. S., Glass, C. K. and Rosenfeld, M. G. 2013. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498, 516-520. https://doi.org/10.1038/nature12210
  20. Maruyama, A., Mimura, J. and Itoh, K. 2014. Non-coding RNA derived from the region adjacent to the human HO-1 E2 enhancer selectively regulates HO-1 gene induction by modulating Pol II binding. Nucleic Acids Res. 42, 13599-13614. https://doi.org/10.1093/nar/gku1169
  21. Melo, C. A., Drost, J., Wijchers, P. J., van de Werken, H., de Wit, E., Oude Vrielink, J. A., Elkon, R., Melo, S. A., Léveillé, N., Kalluri, R., de Laat, W. and Agami, R. 2013. eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol. Cell 49, 524-535. https://doi.org/10.1016/j.molcel.2012.11.021
  22. Ong, C. T. and Corces, V. G. 2011. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 12, 283-293.
  23. Plank, J. L. and Dean, A. 2014. Enhancer function: mechanistic and genome-wide insights come together. Mol. Cell 55, 5-14. https://doi.org/10.1016/j.molcel.2014.06.015
  24. Schaukowitch, K., Joo, J. Y., Liu, X., Watts, J. K., Martinez, C. and Kim, T. K. 2014. Enhancer RNA facilitates NELF release from immediate early genes. Mol. Cell 56, 29-42. https://doi.org/10.1016/j.molcel.2014.08.023
  25. Kapranov, P., Willingham, A. T. and Gingeras, T. R. 2007. Genome-wide transcription and the implications for genomic organization. Nat. Rev. Genet. 8, 413-423. https://doi.org/10.1038/nrg2083
  26. Wittschieben, B. O., Otero, G., de Bizemont, T., Fellows, J., Erdjument-Bromage, H., Ohba, R., Li, Y., Allis, C. D., Tempst, P. and Svejstrup, J. Q. 1999. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell 4, 123-128. https://doi.org/10.1016/S1097-2765(00)80194-X
  27. Zhu, Y., Sun, L., Chen, Z., Whitaker, J. W., Wang, T. and Wang, W. 2013. Predicting enhancer transcription and activity from chromatin modifications. Nucleic Acids Res. 41, 10032-10043. https://doi.org/10.1093/nar/gkt826
  28. Tuan, D., Kong, S. and Hu, K. 1992. Transcription of the hypersensitive site HS2 enhancer in erythroid cells. Proc. Natl. Acad. Sci. USA 89, 11219-11223. https://doi.org/10.1073/pnas.89.23.11219
  29. Li, J., Moazed, D. and Gygi, S. P. 2002. Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation. J. Biol. Chem. 277, 49383-49388. https://doi.org/10.1074/jbc.M209294200
  30. Wang, D., Garcia-Bassets, I., Benner, C., Li, W., Su, X., Zhou, Y., Qiu, J., Liu, W., Kaikkonen, M. U., Ohgi, K. A., Glass, C. K., Rosenfeld, M. G. and Fu, X. D. 2011. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390-394. https://doi.org/10.1038/nature10006