DOI QR코드

DOI QR Code

Characteristics of Coagulase-negative Staphylococci Isolates from Dental Clinic Environments in Busan, Korea

부산지역 치과환경에서 분리된 coagulase-negative staphylococci의 특성

Jung, Hye-In;Jung, So Young;Park, Indal;Bae, Il Kwon
정혜인;정소영;박인달;배일권

  • Received : 2015.12.20
  • Accepted : 2016.02.05
  • Published : 2016.02.25

Abstract

Coagulase-negative staphylococci (CNS) have recently become the bacteria most frequently found in clinical infections. The aim of this study was to investigate the prevalence, antimicrobial susceptibilities, and molecular characteristics of CNS isolates from dental clinic environments in Busan, Korea. One hundred and fifty-four samples were collected from 10 dental clinics and dental hospitals in Busan from December 2014 to January 2015. Species were identified by matrix-assisted laser desorption/ionization–time-of-flight. Antimicrobial susceptibility was determined by disk diffusion methods. A polymerase chain reaction was performed to detect mecA, mupA gene, and SCCmec types. Of the 154 samples, 10(6.5%) isolates were identified as CNS (5 Staphylococcus epidermidis, 2 Staphylococcus capitis, 2 Staphylococcus, and 1 Staphylococcus haemolyticus). Among the 10 isolates, 6 were resistant to penicillin, 5 were resistant to gentamicin, 3 were resistant to tetracycline, and 2 were resistant to cefoxitin and erythromycin. However, clindamycin, ciprofloxacin, teicoplanin, and trimethoprim-sulfamethoxazole resistant isolates were not present. Genes encoding mecA were detected in 4 (2 S. warneri and 2 S. haemolyticus) isolates, and mupA in 1 (S. epidermidis) isolate. One methicillin-resistant CNS (S. warneri) isolate was determined as being of the SCCmec type I. It is concluded that CNS resistant to various antimicrobial agents was widely distributed in dental clinic environments in Korea.

Keywords

Coagulase-negative staphylococci;dental clinic environment;mecA;mupA;SCCmec type

References

  1. Bastos, M. C., Mondino, P. J., Azevedo, M. L., Santos, K. R. and Giambiagi-de Marval, M. 1999. Molecular characterization and transfer among Staphylococcus strains of a plasmid conferring high-level resistance to mupirocin. Eur. J. Clin. Microbiol. Infect. Dis. 18, 393-398. https://doi.org/10.1007/s100960050306
  2. Clinial and Laboratory Standards Institute (CLSI). 2014. Performance standards for antimicrobial susceptibility testing; Twenty-Fourth informational suspplement. M100-S24. Clinical and Laboratory Standards Insitute. 34, 68-75.
  3. Cookson, B. D. 1998. The emergence of mupirocin resistance: a challenge to infection control and antibiotic prescribing practice. J. Antimicrob. Chemother. 41, 11-18. https://doi.org/10.1093/jac/41.1.11
  4. Gilbart, J. Perry, C. R. and Slocombe, B. 1993. High-level mupirocin resistance in Staphylococcus aureus: evidence for two distinct isoleucyl-tRNA synthetases. Antimicrob. Agents Chemother. 37, 32-38. https://doi.org/10.1128/AAC.37.1.32
  5. Ito, T., Ma, X. X., Takeuchi, F., Okuma, K., Yuzawa, H. and Hiramatsu, K. 2004. Novel type V Staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob. Agents Chemother. 48, 2637-2651. https://doi.org/10.1128/AAC.48.7.2637-2651.2004
  6. Kilic, A., Li, H., Stratton, C. W. and Tang, Y. W. 2006. Antimicrobial susceptibillity patterns and staphylococcal cassette chromosome mec types of as well as panton-valentine leukcidin occurrence among, methicillin-resistant Staphylococcus aureus isolates from childeren and adults in middle Tennessee. J. Clin. Microbiol. 44, 4436-4440. https://doi.org/10.1128/JCM.01546-06
  7. Kloos, W. E. and Bannerman, T. L. 1999. Stapylococcus and Micrococcus. In: Manual of clinical microbiology, pp. 264-282, 7th ed., ASM Press, Washington DC, USA.
  8. Ko, K. S., Lee, J. Y., Suh, J. Y., Oh, W. S., Peck, K. R., Lee, N. Y. and Song, J. H. 2005. Distribution of major genotypes among methicillin-resistant Staphylococcus aureus clones in Asian countries. J. Clin. Microbiol. 43, 421-426. https://doi.org/10.1128/JCM.43.1.421-426.2005
  9. Lee, A. S., Macedo-Vinas, M., Francois, P., François, P., Renzi, G., Vernaz, N., Schrenzel, J., Pittet, D. and Harbarth, S. 2011. Trends in mupirocin resistance in methicillin-resistant Staphylococcus aureus and mupirocin consumption at a tertiary care hospital. J. Hosp. Infect. 77, 360-362. https://doi.org/10.1016/j.jhin.2010.11.002
  10. Leyden, J. J. 1990. Mupirocin: a new topical antibiotic. J. Am. Acad. Dermatol. 22, 879-883. https://doi.org/10.1016/0190-9622(90)70117-Z
  11. Lim, K. T., Hanifah, Y. A., Mohd Yusof, M. Y. and Thong, K. L. 2010. Prevalence of mupirocin resistance methicillin-resistant Staphylococcus aureus strains isolated from a Malaysian hospital. Jpn. J. Infect. Dis. 63, 286-289.
  12. Min, Y. H., Lee, J. S., Kwon, A. R., Shim, M. J. and Choi, E. C. 2012. Resistance determinants and antimicrobial susceptibilities of mupirocin-resistant staphylococci Isolated from a Korean hospital. Kor. J. Microb. 48, 93-101. https://doi.org/10.7845/kjm.2012.48.2.093
  13. Oliveria, D. C. and de Lencastre, H. 2002. Multiplex PCR strategy for rapid identificaion of strucral types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 46, 2155-2161. https://doi.org/10.1128/AAC.46.7.2155-2161.2002
  14. Park, S. Y., Kim, S. M. and Park, S. D. 2012. The prevalence, genotype and antimicrobial susceptibility of high- and low-level mupirocin resistant methicillin-resistant Staphylococcus aureus. Ann. Dermatol. 24, 32-38. https://doi.org/10.5021/ad.2012.24.1.32
  15. Park, Y. C. 2013. Clinical characteristics of coagulase-negtative staphylococci from blood culture. master′s thesis, Chungnam National University, Daejeon, Korea.
  16. Pérez-Roth, E., López-Aguilar, C., Alcoba-Florez, J. and Méndez-Alvarez, S. 2006. High-level mupirocin resistant within methicillin-resistant Staphylococcus aureus pandemic lineages. Antimicrob. Agents Chemother. 50, 3207-3211. https://doi.org/10.1128/AAC.00059-06
  17. Shin, E. S. 2004. Mupirocin resistance plasmid analysis of methicillin-resistant Staphylococci isolates from tertiary hospitals in South Korea. master′s thesis, Korea University, Seoul, Korea.
  18. Sutherland. R., Boon, R. J., Griffin, K. E., Masters, P. J., Slcombe, B. and White, A. R. 1985. Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob. Agents Chemother. 27, 495-498. https://doi.org/10.1128/AAC.27.4.495
  19. Szymańska, J. 2007. Dental bio aerosol as an occupational hazard in a dentist′s workplace. Ann. Agric. Environ. Med. 14, 203-207.
  20. Thomas, D. G., Wilson, J. M., Day, M. J. and Russell, A. D. 1999. Mupirocin resistance in staphylococci: development and transfer of isoleucyl-tRNA synthetase mediated resistance in vitro. J. Appl. Microbiol. 86, 715-722. https://doi.org/10.1046/j.1365-2672.1999.00718.x
  21. Vuong, C. and Otto, M. 2002. Staphylococcus epidermidis infections. Microbes Infect. 4, 481-489. https://doi.org/10.1016/S1286-4579(02)01563-0
  22. Yoo, J. I., Shin, E. S., Chung, G. T., Lee, K. M., Yoo, J. S. and Lee, Y. S. 2010. Restriction fragment length polymorphism (RFLP) patterns and sequence analysis of high-level mupirocin-resistant methicillin-resistant staphylococci. Int. J. Antimicrob. Agents 35, 50-55. https://doi.org/10.1016/j.ijantimicag.2009.08.017
  23. Yun, H. J., Lee, S. W., Yoon, G. M., Kim, S. Y., Choi, S., Lee, Y. S., Choi, E. C. and Kim, S. 2003. Prevalence and mechanisms of low- and high-level mupirocin resistance in staphylococci isolated from a Korean hospital. J. Antimicrob. Chemother. 51, 619-623. https://doi.org/10.1093/jac/dkg140
  24. Park, S. Y. 2010. Prevalence, genotyping and antimicrobial susceptibility test of high- and low-level mupirocin resistant methicillin-resistant Staphylococcus aureus. master′s thesis, Wonkwang University, Iksan, Korea.
  25. Yanagisawa, T., Lee, J. T., Wu, H. C. and Kawakami, M. 1994. Relationship of protein structure of isoleucyl-tRNA synthetase with pseudomonic acid resistance of Escherichia coli. A proposed mode of action of pseudomonic acid as an inhibitor of isoleucyl-tRNA synthetase. J. Biol. Chem. 269, 24304-24309.
  26. Jones, M. E., Barry, A. L., Gardiner, R. V. and Packer, R. R. 1989. The prevalence of staphylococcal resistance to penicillinase resistant penicillins. A retrospective and prospective national surveillance trial of isolates from 40 medical centers. Diagn. Microbiol. Infect. Dis. 12, 385-394. https://doi.org/10.1016/0732-8893(89)90108-9
  27. Jung , W. K., Kang, E. J., Yoon, M. S., Kang, H. S., Kwak, J. S., Kim, J., Kim, S. M., Moon, S. E., Park, Y. M., Shin, S. H., Lee, M. O. and Han, M. D. 2002. Cross infection control in dentistry, pp.77-79, 1st ed., Daehan-narae. Krorea.
  28. Baron, E. J. and Murray, P. R. 2007. Manual of Clinical Microbiology, pp. 393-395, 9th ed., ASM Press, Washington DC, USA.
  29. Anthony, R. M., Connor, A. M., Power, E. G. M. and French, G. L. 1999. Use of the polymerase chain reaction for rapid detection of high-level mupirocin resistance in staphylococci. Eur. J. Clin. Microbiol. Infect. Dis. 18, 30-34. https://doi.org/10.1007/s100960050222