DOI QR코드

DOI QR Code

Effect of Submerged Culture of Ceriporia lacerata Mycelium on Insulin Signaling Pathway in 3T3-L1 Cell

Ceriporia lacerata 균사체 배양물이 3T3-L1 세포에서 인슐린 신호 전달에 미치는 영향

  • Received : 2016.01.28
  • Accepted : 2016.03.11
  • Published : 2016.03.30

Abstract

In this study, we evaluated the antidiabetic effect of submerged culture of Ceriporia lacerata mycelium (CL01) on glucose uptake and the expression of mRNA and protein of major signal markers of insulin signaling pathway in 3T3-L1 adipocytes. After 3T3-L1 adipocytes were pre-treated by CL01 (0, 2, 10 mg/ml) for 8 hours, followed with treatment of insulin, the glucose uptake levels significantly increased by more 55.1%, 94.4% than negative control respectively (p<0.01, 0.001) in a dose-dependent manner. However, in case of CL01 pre-treatment without insulin, the glucose uptake did not increase compared with insulin-treated 3T3-L1. Also we demonstrated that the protein expression levels of pIR β, pAkt, pPI3K and pAMPK and the mRNA expression levels of GLUT4 in adipocytes inducing insulin resistance increased in CL01-treated group compared with negative control. These results demonstrated that CL01 affected glucose metabolism and the protein and gene expression through insulin signaling pathway, and increased glucose uptake levels effectively. More than 90% of those who have suffered for type 2 diabetes are more likely to have from hyperinsulinemia, hypertension, obesity and etc. because of altered insulin signaling pathway. So, it is probably considered that intake of CL01 may treat type 2 diabetes by normalization of insulin signaling pathway, and it will provide useful evidences regarding a mechanism for cure of type 2 diabetes.

Keywords

3T3-L1 adipocyte;Ceriporia lacerata;diabetes;GLUT4;insulin signaling pathway

References

  1. Allard, M., Schonekess, B., Henning, S., English, D. and Lopaschuk, G. D. 1994. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am. J. Physiol. 267, H742-H750.
  2. Beckman, J. A., Creager, M. A. and Libby, P. 2002. Diabetes and atherosclerosis; epidermiology, pathophysiology, and management. JAMA 287, 2570-2581. https://doi.org/10.1001/jama.287.19.2570
  3. Cartee, G. D. and Wojtaszewski, J. F. 2007. Role of Akt substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport. Appl. Physiol. Nutr. Metab. 32, 557-566. https://doi.org/10.1139/H07-026
  4. Chen, G., Liu, P., Pattar, G. R., Tackett, L., Bhonagiri, P., Stawbridge, A. B. and Elmendorf, J. S. 2006. Chromium activates glucose transporter 4 trafficking and enhance insulin-stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol-dependent mechanism. Mol. Endocrinol. 20, 857-870. https://doi.org/10.1210/me.2005-0255
  5. Cho, E. K. and Choi, Y. J. 2013. Antioxidant, antidiabetic and anti-inflammatory effacts of extracts and fractions from Parthenocissus tricuspidata stems. J. Life Sci. 23, 399-405. https://doi.org/10.5352/JLS.2013.23.3.399
  6. Fonseca, V. 2006. The role of basal insulin therapy in patients with type 2 diabetes mellitus. Insulin 1, 51-60. https://doi.org/10.1016/S1557-0843(06)80010-2
  7. Hayashi, T., Wojtaszewski, J. F. and Goodyear, L. J. 1997. Exercise regulation of glucose transport in skeletal muscle. Am. J. Physiol. 273, 1039-1051.
  8. Hiroto, S., Nitaro, M., Shuhei, K., Tsutomu, H., Kokki, S. and Ryuichiro, K. 2003. A new species, Ceriporia lacerata, isolated from white-rotted wood. Mycotaxon 86, 335-347.
  9. Im, S. A., Kim, K. H., Shin, E. J., Do, S. G., Jo, T. H., Park, Y. I. and Lee, C. K. 2013. Effects of antidiabetic agent, aloe QDM complex, on intracellular glucose uptake. Kor. J. Pharmacogn. 44, 75-82.
  10. Kang, H. J. 2007. Exercise physiologic mechanisms related to effective exercise prescription in type 2 diabetes mellitus. Kor. J. Health Promot. Dis. Prev. 7, 9-16.
  11. Kang. T. S., Kang, M. S., Sung, J. M., Kang A. S., Shon, H. R. and Lee, S. Y. 2001. Effects of Pleurotus eryngii on the blood glucose and cholesterol in diabetic rats. Kor. J. Mycol. 29, 86-90.
  12. Kim, D. H., Kang, Y. G., Kim, H. and Chae, H. J. 2004. Investigation of antidiabetic medicinal plants using an oriental medicinal database. Kor. J. Biotechnol. Bioeng. 19, 125-131.
  13. Kim, J. E., Kim, H. J. and Lee, S. P. 2012. Hyperglycemic effect of submerged culture extract of Ceriporia lacerata in streptozotocin-induced diabetic rats. Food Sci. Biotechnol. 21, 1685-1693. https://doi.org/10.1007/s10068-012-0224-9
  14. Kwon, E. J., Hong, S. G., Kim, M. M, Kim, J. W., Kim, D. W. and Chung, K. T. 2014. Effects of ginseng berry water extract on the polysaccharide hydrolysis of extracellular enzymes and intracellular PTP1B and AKT1. J. Life Sci. 24, 1006-1001. https://doi.org/10.5352/JLS.2014.24.9.1006
  15. Lanner, J. T., Buruton, J. D., Katz, A. and Westerblad, H. 2008. Ca2+ and insulin-mediated glucose uptake. Curr. Opin. Pharmacol. 8, 339-345. https://doi.org/10.1016/j.coph.2008.01.006
  16. Lee, J. W., Gwak, K. S., Park, J. Y., Park, M. J., Choi, D. H., Kwon, M., and Choi, I. G. 2007. Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J Microbiol. 45, 485-491.
  17. Lin-Moshier, Y. and Marchant, J. S. 2013. A rapid western blotting protocol for the Xenopus oocyte. Cold Spring Harb. Protoc. 2013, 262-265.
  18. Lin, Y., He, X., Han, G., Tian, Q. and Hu, W. 2011. Removal of crystal violet from aqueous solution using powdered mycelia biomass of Ceriporia lacerata P2. J. Environ. Sci. 23, 2055-2062. https://doi.org/10.1016/S1001-0742(10)60643-2
  19. Lorenzen, A. and Kennedy, S.,W. 1993. A fluorescence-based protein assay for use with a microplate reader. Anal. Biochem. 214, 346-348. https://doi.org/10.1006/abio.1993.1504
  20. Park, J. Y. 2007. Biodegradation of dimethyl phthalate by white rot fungus, Ceriporia lacerata. M.S. thesis. Seoul National University, Seoul, Korea.
  21. Park, K. J., Oh, Y. J., Lee, S. Y., Kim, H. S. and Ha, H. C. 2007. Anti-diabetic effect oc crude polysaccharides from Grifola frondosa in KK-Ay diabetic mouse and 3T3-L1 adipocyte. Kor. J. Food Sci. Technol. 39, 330-335.
  22. Perrini, S., Natalicchio, A., Laviola, L., Belsanti, G., Montrone, C., Cignarelli, A., Minielli, V., Grano, M., De pergola, G. and Giorgino, R. 2004. Dehydroepiandrosterone stimulates glucose uptake in human and murine adipocytes by inducing GLUT1 and GLUT4 translocation to the plasma membrane. Diabetes 53, 41-52. https://doi.org/10.2337/diabetes.53.1.41
  23. Shin, E. J., Kim, J. E., Kim, J. H., Park, Y. M., Yoon, S. K., Jang, B. C., Lee, S. P. and Kim, B. C. 2015. Effect of submerged culture of Ceriporia lacerata mycelium on GLUT4 protein in db/db mouse. Kor. J. Food Preserv. 22, 893-900. https://doi.org/10.11002/kjfp.2015.22.6.893
  24. Shin, E. J., Kim, J. E., Kim, J. H., Park, Y. M., Yoon, S. K., Jang, B. C., Lee, S. P. and Kim, B. C. 2015. Hypoglycemic effect of submerged culture of Ceriporia lacerata mycelium. Kor. J. Food Preserv. 22, 145-153. https://doi.org/10.11002/kjfp.2015.22.1.145
  25. Song, J. Y., Yoon, K. J., Yoon, H. K. and Koo, S. J. 2001. Effect of β-glucan from Lentinus edodes and Hordeum vulgare on blood glucose and lipid composition in alloxan-induced diabetic mice. Kor. J. Food Sci. Technol. 33, 802-807.
  26. Tan, S. C. and Yiap, B. C. 2009. DNA, RNA, and protein extraction: The past and the present. J. Biomed. Biotechnol. 2009, 574398.
  27. Thirone, A. C., Huang, C. and Klip, A. 2006. Tissue-specific roles of IRS prioteins in insulin signaling and glucose transport. Trends Endocrinol. Metab. 17, 72-78.
  28. Thong, F. S., Dugani, C. B. and Klip, A. 2005. Turning signals on and off : GLUT4 traffic in the insulin-signaling highway. Physiology (Bethesda) 20, 271-281. https://doi.org/10.1152/physiol.00017.2005
  29. Van-pelt, R. E., Jones, P. P., Davy, K. P., Desouza, C. A., Tanaka, H., Davy, B. M. and Seals, D. R. 1997, Regular exercise and the age-related decline in resting metabolic rate in women. J. Clin. Endocrinol. Metab. 82, 3208-3212.
  30. White, M. F. 2003. Insulin signaling in health and disease. Science 302, 1710-1711. https://doi.org/10.1126/science.1092952
  31. Xu. M. L., Hu, J. H., Wang, L., Kim, H. S., Jin, C. W. and Cho, D. H. 2010, Antioxidant and anti-diabetes activity of extracts from Machilus thunbergii S. et Z. Kor. J. Med. Crop. Sci. 18, 34-39.

Acknowledgement

Grant : 세리포리아 락세라타 균사체 배양물의 당뇨병의 개선 및 치료용 기능성식품소재화

Supported by : 농업회사법인(주)월드바이오텍