DOI QR코드

DOI QR Code

Improved Global Maximum Power Point Tracking for Photovoltaic System via Cuckoo Search under Partial Shaded Conditions

  • Shi, Ji-Ying ;
  • Xue, Fei ;
  • Qin, Zi-Jian ;
  • Zhang, Wen ;
  • Ling, Le-Tao ;
  • Yang, Ting
  • Received : 2015.04.18
  • Accepted : 2015.08.17
  • Published : 2016.01.20

Abstract

Conventional maximum power point tracking (MPPT) methods are ineffective under partially shaded conditions because multiple local maximum can be exhibited on power-voltage characteristic curve. This study proposes an improved cuckoo search (ICS) MPPT method after investigating the cuckoo search (CS) algorithm applied in solving multiple MPPT. The algorithm eliminates the random step in the original CS algorithm, and the conception of low-power, high-power, normal and marked zones are introduced. The adaptive step adjustment is also realized according to the different stages of the nest position. This algorithm adopts the large step in low-power and marked zones to reduce search time, and a small step in high-power zone is used to improve search accuracy. Finally, simulation and experiment results indicate that the promoted ICS algorithm can immediately and accurately track the global maximum under partially shaded conditions, and the array output efficiency can be improved.

Keywords

Improved cuckoo search;Maximum power point tracking;Multiple local maximum;Partially shaded conditions;Photovoltaic array

References

  1. D.-Y. Jung, Y.-H. Ji, S.-H. Park, and Y.-C. Jung, “Interleaved soft-switching boost converter for photovoltaic power-generation system,” IEEE Trans. Power Electron., Vol. 26, No. 4, pp. 1137-1145, Apr. 2011. https://doi.org/10.1109/TPEL.2010.2090948
  2. T. Esram and P.L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., Vol. 22, No. 2, pp. 439–449, Jun. 2007. https://doi.org/10.1109/TEC.2006.874230
  3. J.-H. Lee, J.-S. Lee, and K.-B. Lee, “Current Sensorless MPPT Control Method for Dual-Mode PV Module-Type Interleaved Flyback Inverters,” Journal of Power Electronics, Vol. 15, No. 1 pp. 54-64, Jan. 2015. https://doi.org/10.6113/JPE.2015.15.1.54
  4. E. M. Ahmed and M. Shoyama, “Variable Step Size Maximum Power Point Tracker Using a Single Variable for Stand-alone Battery Storage PV Systems,” Journal of Power Electronics, Vol. 11, No. 2, pp. 218-227, Mar. 2011 https://doi.org/10.6113/JPE.2011.11.2.218
  5. N. Fermia, D. Granozio, G. Petrone, and M. Vitelli, “Predictive & adaptive MPPT perturb and observe method,” IEEE Trans. Aerosp. Electron. Syst., Vol. 43, No. 3, pp. 934-950, Jul. 2007. https://doi.org/10.1109/TAES.2007.4383584
  6. J.-Y. Choi, I. Choy, S.-H. Song, J. An, D.-H. Lee, and J.-W. Kim, “A Study of an Implementable Sun Tracking Algorithm for Portable Systems,” Journal of Power Electronics, Vol. 13, No. 6, pp.1051-1057, Nov. 2013. https://doi.org/10.6113/JPE.2013.13.6.1051
  7. N. Fernia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., Vol. 20, No. 4, pp. 963-973, Jul. 2005. https://doi.org/10.1109/TPEL.2005.850975
  8. L. Piegari and R. Rizzo, “Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking,” IET Renewable Power Generation, Vol. 4, No. 4, pp. 317-328, Jul. 2010. https://doi.org/10.1049/iet-rpg.2009.0006
  9. A. K. Abdelsalam, A. M. Massoud, S. Ahmed, and P. Enjeti, “High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids,” IEEE Trans. Power Electron., Vol. 26, No. 4, pp. 1010-1021, Apr. 2011. https://doi.org/10.1109/TPEL.2011.2106221
  10. J. Li and H. Wang, "A novel stand-alone PV generation system based on variable step size INC MPPT and SVPWM control," in IEEE 6th International Power Electronics and Motion Control Conference, pp. 2155-2160, May 2009.
  11. A. Safari and S. Mekhilef, “Simulation and hardware implementation of incremental conductance MPPT with direct control method using Cuk converter,” IEEE Trans. Ind. Electron., Vol. 58, No. 4, pp.1154-1161, Apr. 2011. https://doi.org/10.1109/TIE.2010.2048834
  12. B. N. Alajmi, K. H. Ahmed, S. J. Finney, and B. W. Williams, “Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system,” IEEE Trans. Power Electron., Vol. 26, No. 4, pp. 1022–1030, Apr. 2011. https://doi.org/10.1109/TPEL.2010.2090903
  13. N. D. Kaushika and N. K. Gautam, "Mismatch losses and time t failure of solar PV arrays," in Proc. International Solar Energy Society Meeting, pp. 1681-1686, 2001.
  14. W. Xiao and W. G. Dunford, "A modified adaptive hill climbing MPPT method for photovoltaic power systems," in IEEE 35th Annual Power Electronics Specialists Conference(PESC), Vol. 3, pp. 1957-1963, Jun. 2004.
  15. Q. Fu and N. Tong, "A new fuzzy control method based on PSO for Maximum Power Point Tracking of photovoltaic system," in 2011 International Conference on Computer Science and Network Technology(ICCSNT), Vol. 3, pp. 1487-1491, Dec. 2011.
  16. I. S. Kim, “Sliding mode controller for the single-phase grid-connected photovoltaic system,” Applied Energy, Vol. 83, No. 10, pp. 1101-1115, Oct. 2006. https://doi.org/10.1016/j.apenergy.2005.11.004
  17. T. Shimizu, M. Hirakata, T. Kamezawa, and H. Watanabe, “Generation control circuit for photovoltaic modules,” IEEE Trans. Power Electron., Vol. 16, No. 3, pp. 293-300, May 2001. https://doi.org/10.1109/63.923760
  18. T. Mishima and T. Ohnishi, "A power compensation strategy based on electric double layer capacitors for a partially shaded PV array," in the Fifth International Conference on Power Electronics and Drive Systems(PEDS), Vol. 2, pp. 858-863, Nov. 2003.
  19. K. Ishaque, Z. Salam, M. Amjad, and S. Mekhilef, “An improved Particle Swarm Optimization (PSO)–based MPPT for PV with reduced steady-state oscillation,” IEEE Trans. Power Electron., Vol. 27, No. 8, pp. 3627-3638, Aug. 2012. https://doi.org/10.1109/TPEL.2012.2185713
  20. Y.-H. Liu, S.-C. Huang, J.-W. Huang, and W.-C. Liang, “A particle swarm optimization-based maximum power point tracking algorithm for PV systems operating under partially shaded conditions,” IEEE Trans. Energy Convers., Vol. 27, No. 4, pp. 1027-1035, Dec.2012. https://doi.org/10.1109/TEC.2012.2219533
  21. K. Sundareswaran, S. Peddapati, and S. Palani, “MPPT of PV systems under partial shaded conditions through a colony of flashing fireflies,” IEEE Trans. Energy Convers., Vol. 29, No. 2, pp. 463-472, Jun. 2014. https://doi.org/10.1109/TEC.2014.2298237
  22. K. Ishaque and Z. Salam, “A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition,” IEEE Trans. Ind. Electron., Vol. 60, No. 8, pp. 3195-3206, Aug. 2013.
  23. P. Kofinas, A. I. Dounis, G. Papadakis, and M. N. Assimakopoulos, “An Intelligent MPPT Controller based on Direct Neural Control for Partially Shaded PV System,” Energy and Buildings, Vol. 90, No. 1, pp. 51-64, Mar. 2015. https://doi.org/10.1016/j.enbuild.2014.12.055
  24. K. Sundareswaran, P. Sankar, P. S. R. Nayak, and S. P. Simon, “Enhanced Energy Output from a PV System under Partial Shaded Conditions Through Artificial Bee Colony,” IEEE Trans. Sustain. Energy, Vol. 6, No. 1, pp. 198-209, Jan. 2015. https://doi.org/10.1109/TSTE.2014.2363521
  25. Y. M. Safarudin, A. Priyadi, M. H. Purnomo, and M. Pujiantara, "Maximum power point tracking algorithm for photovoltaic system under partial shaded condition by means updating β firefly technique," in 6th International Conference on Information Technology and Electrical Engineering(ICITEE), pp. 1-5, Oct. 2014.
  26. J. Ahmed and Z. Salam, “A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability,” Applied Energy, Vol. 119, No. 15, pp. 118-130, Apr. 2014. https://doi.org/10.1016/j.apenergy.2013.12.062
  27. R. C. Eberhart and J. Kennedy, "A new optimizer using particle swarm theory," in Proceedings of the sixth international symposium on micro machine and human science, pp. 39-43. 1995.
  28. X.-S. Yang and S. Deb, “Engineering optimization by cuckoo search”, International Journal of Mathematical Modelling and Numerical Optimization, Vol. 1, No. 4, pp.330-343, Oct.2010. https://doi.org/10.1504/IJMMNO.2010.035430
  29. X.-S. Yang and S. Deb, "Cuckoo search via Lévy flights," in World Congress on Nature & Biologically Inspired Computing(NaBIC), pp. 210-214, Dec. 2009.
  30. B. Zeng, J. Zhang, Y. Zhang, X. Yang, J. Dong, and W. Liu, “Active Distribution System Planning for Low-carbon Objective using Cuckoo Search Algorithm,” Journal of Electrical Engineering & Technology, Vol. 9, No. 2, pp. 433-440, Sep. 2014. https://doi.org/10.5370/JEET.2014.9.2.433
  31. J. Piechocki, D. Ambroziak, A. Palkowski A, and G. Redlarski, “Use of Modified Cuckoo Search algorithm in the design process of integrated power systems for modern and energy self-sufficient farms,” Applied Energy, Vol. 114, No. 2, pp.901-908, Feb. 2014. https://doi.org/10.1016/j.apenergy.2013.07.057
  32. S. Berrazouane and K. Mohammedi, “Parameter optimization via cuckoo optimization algorithm of fuzzy controller for energy management of a hybrid power system,” Energy Conversion & Management, Vol. 78, No. 1, pp.652–660. Feb. 2014. https://doi.org/10.1016/j.enconman.2013.11.018
  33. C. Mishra, S. P. Singh, and J. Rokadia, “Optimal power flow in the presence of wind power using modified cuckoo search,” IET Generation, Transmission & Distribution, Vol. 9, No. 7, pp.615-626, Apr. 2015. https://doi.org/10.1049/iet-gtd.2014.0285

Cited by

  1. Dual-buck residential photovoltaic inverter with a high-accuracy repetitive current controller vol.101, 2017, https://doi.org/10.1016/j.renene.2016.08.050
  2. Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions vol.77, 2017, https://doi.org/10.1016/j.rser.2017.02.056
  3. Combining incremental conductance and firefly algorithm for tracking the global MPP of PV arrays vol.9, pp.2, 2017, https://doi.org/10.1063/1.4977213