DOI QR코드

DOI QR Code

Sonochemical Synthesis and Photocatalytic Characterization of ZnO Nanoparticles

초음파 방법을 이용한 ZnO 나노입자 합성 및 광촉매 특성 연구

  • Received : 2015.09.14
  • Accepted : 2015.12.16
  • Published : 2016.02.20

Abstract

In this paper, zinc oxide nanoparticles (ZnO NPs) were synthesized using the sonochemical method, where equimolar amounts of zinc acetate dehydrate and sodium hydroxide were separately dissolved in deionized water, and then mixed for 30 min under magnetic stirring. The resultant white gel was sonicated for 60, 120, 180, 240, and 360 min with magnetic stirring. The obtained precipitates were centrifuged, repeatedly washed with ethanol to remove ionic impurities, and dried at 50 ℃ for 24 h. The formation of pure NPs was confirmed by X-ray diffraction, and their crystallinity and crystal phases were analyzed as well. Structural investigation was carried out by field-emission scanning electron microscopy (FE-SEM). The photocatalysis behavior of the ZnO NPs was investigated in a dark room under UV irradiation, using Rhodamine B. Spherical, rod, and flower-like ZnO NPs could be obtained by adjusting the sonication time, as observed by FE-SEM. The flower-like ZnO NPs exhibited excellent photocatalytic activity.

Keywords

ZnO;Sonochemical method;Photocatalyst;Nanomaterial

References

  1. Hu, J. Q.; Ma, X. L.; Xie, Z. Y.; Wong, N. B.; Lee, C. S.; Lee, S. T. Chem. Phys. Lett. 2001, 344, 97. https://doi.org/10.1016/S0009-2614(01)00720-5
  2. Guzman, M. G.; Dille, J.; Godet, S. J. Chem. Bio. Eng. 2009, 23, 104.
  3. Das, S. K.; Marsili, E. Nanomaterials 2011, 22, 253.
  4. Sanvicens, N.; Marco, M. P. Biotechnology 2008, 26, 425.
  5. Akbarzadeg, A.; Samiei, M.; Davaran, S.; Nano. Res. Lett. 2012, 7, 144. https://doi.org/10.1186/1556-276X-7-144
  6. Choi, N. B.; Wee, H. B.; Nam, S. H.; Lavelle, J.; Hatalis, M. Microelectron Eng. 2012, 91, 93. https://doi.org/10.1016/j.mee.2011.11.010
  7. Yu, R.; Kim, Y. J.; Pee, J. H.; Hwang, K. T.; Yang, H. S.; Kim, K. J. J. J. Korean Ceramic Soc. 2010, 47, 113. https://doi.org/10.4191/KCERS.2010.47.2.113
  8. Jin, Y. H.; Shim, H. W.; Kim, D. W. J. J. Korean Ceramic Soc. 2011, 48, 636. https://doi.org/10.4191/kcers.2011.48.6.636
  9. Lee, J. W.; Lee, Y. H.; Yoon, H. N. Polymer 2007, 18, 233.
  10. Wang, Y. F.; Yao, J. H.; Jia, G.; Lei, H. Acta. Phys. Pol. A 2011, 119, 451. https://doi.org/10.12693/APhysPolA.119.451
  11. Wang, Z. L. J. Phys. Matter. 2004, 16, R829. https://doi.org/10.1088/0953-8984/16/25/R01
  12. Zhang, Z.; Zhao, H.; Tao, X.; Zhao, Z. Mater. Lett. 2004., 59, 1745.
  13. Hu, X. L.; Zhu, Y. J.; Wang, S. W. Mater. Chem. Phys. 2004, 88, 421. https://doi.org/10.1016/j.matchemphys.2004.08.010
  14. Zhou, S. M.; Feng, Y. S.; Zhang, L. D. Mater. Lett. 2003, 57, 2936. https://doi.org/10.1016/S0167-577X(02)01400-3
  15. Li, X.; Li, Y.; Zhou, W.; Chu, H.; Chen, W.; Li, I. L.; Tang, Z. Cryst. Growth Des. 2005, 5, 911. https://doi.org/10.1021/cg049681q
  16. Mayers, B. T.; Liu, K.; Sunderland, D.; Xia, Y. Chem. Mater. 2003, 15, 3852. https://doi.org/10.1021/cm034193b
  17. Li, Z.; Mi, L.; Chen, W. H.; Hou, H. W.; Liu, C. T.; Wang, H. L.; Zheng, Z. L.; Shen, C. Y. Cryst. Eng. Comm. 2012, 14, 3965. https://doi.org/10.1039/c2ce00018k
  18. Hung, S. T.; Chang, C. J.; Hsu, M. H. J. Hazard. Mater. 2011, 198, 307. https://doi.org/10.1016/j.jhazmat.2011.10.043
  19. Arabatzis, I. M.; Stergiopoulos, T.; Bemard, M. C.; Labou, D.; Neophytide, S. G.; Falaras, P. Appl. Catal. B: Environmental 2013, 42, 187.
  20. Diamanti, M. V.; Ormellese, M.; Martin, E.; Lanzutti, A.; Mele, A.; Pedeferri, M. P. J. Hazard. Mater. 2011, 186, 2103. https://doi.org/10.1016/j.jhazmat.2010.12.128
  21. Baek, M. H.; Jung, W. C.; Yoon, J. W.; Hong, J. S.; Lee, Y. S.; Suh, J. K. J. Ind. Eng. Chem. 2013, 19, 469. https://doi.org/10.1016/j.jiec.2012.08.026
  22. Lee, Y. C.; Yang, J. W. J. Ind. Eng. Chem. 2012, 18, 1178. https://doi.org/10.1016/j.jiec.2012.01.005