DOI QR코드

DOI QR Code

Preparation of Nanosized Palladium-Graphene Composites and Photocatalytic Degradation of Various Organic Dyes

Kim, Jae Jin;Ko, Weon Bae

  • Received : 2015.10.28
  • Accepted : 2015.09.23
  • Published : 2016.03.31

Abstract

Nanosized palladium particles were synthesized using palladium(II) chloride, trisodium citrate dihydrate, and sodium borohydride under stirring condition. Nanosized palladium-graphene composites were prepared from palladium nanoparticles, and graphene was enclosed with polyallylamine under stirring condition for 1 h followed by ultrasonication for 3 h. Nanosized palladium-graphene composites were heated in an electric furnace at $700^{\circ}C$ for 2 h and characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. UV-vis spectrophotometry was used to evaluate the nanosized palladium-graphene composites as a catalyst in the photocatalytic degradation of various organic dyes such as methylene blue, methyl orange, rhodamine B, and brilliant green under ultraviolet light at 254 nm.

Keywords

nanosized palladium-graphene composites;photocatalytic degradation;X-ray diffraction;UV-vis spectrophotometry

References

  1. C. G. Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, "Electronic transport properties of individual chemically reduced graphene oxide sheets", Nano Lett., 7, 3499 (2007). https://doi.org/10.1021/nl072090c
  2. L. Jiang, M. Yao, B. Liu, Q. Li, R. Liu, H. Lv, S. Lu, C. Gong, B. Zou, T. Cui, and B. Liu, "Controlled synthesis of $CeO_2$/graphene nanocomposites with highly enhanced optical and catalytic properties", J. Phys. Chem. C., 116, 11741 (2012). https://doi.org/10.1021/jp3015113
  3. N. R. Wilson, P. A. Pandey, R. Bleanland, R. G. Young, I. A. Kinloch, L. Gong, K. Suenag, J. P. Rourke, and J. Sloan, "Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy", ACS Nano, 3, 2547 (2009). https://doi.org/10.1021/nn900694t
  4. C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, "Graphene: The New Two-Dimensional Nanomaterial", Angew. Chem., Int. Ed., 48, 7752 (2009). https://doi.org/10.1002/anie.200901678
  5. Akhavan, "Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol", Carbon, 49, 11 (2011). https://doi.org/10.1016/j.carbon.2010.08.030
  6. M. G. Chung, D. H. Kim, D. K. Seo, T. W. Kim, H. U. Im, H. M. Lee, J. B. Yoo, S. H. Hong, T. J. Kang, and Y. H. Kim, "Flexible hydrogen sensors using graphene with palladium nanoparticle decoration", Sensors Actuat. B-Chem., 169, 387 (2012). https://doi.org/10.1016/j.snb.2012.05.031
  7. J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang, and L. Jiang, "Hierarchically Ordered Macro-Mesoporous $TiO_2$-Graphene Composite Films: Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities", ACS Nano, 5, 590 (2011). https://doi.org/10.1021/nn102767d
  8. Y. Y. Liang, Y. G. Li, H. L. Wang, J. G. Zhou, J. Wang, and T. Regier, "$Co_3O_4$ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction", Nat. Mater., 10, 780 (2011). https://doi.org/10.1038/nmat3087
  9. Z. S. Wu, W. Ren, D. W. Wang, F. Li, B. Liu, and H. M. Cheng, "High-energy $MnO_2$ nanowire/graphene and graphene asymmetric electrochemical capacitors", ACS Nano, 10, 5835 (2010).
  10. M. D. Dios, V. Salgueirino, M. P. Lorenzo, and M. A. C. Duarte, "Synthesis of carbon nanotube-inorganic hybrid nanocomposites: an instructional experiment in nanomaterials chemistry", J. Chem. Educ., 89, 280 (2012). https://doi.org/10.1021/ed101130n
  11. M. Rezaei, S. H. Tabaian, and D. F. Haghshenas, "Electrochemical nucleation of palladium on graphene: A kinetic study with an emphasis on hydrogen co-reduction", Electrochim. Acta, 87, 381 (2013). https://doi.org/10.1016/j.electacta.2012.09.092
  12. X. F. Wu, P. Anbarasan, H. Neumann, and M. Beller, "From noble metal to nobel prize: palladium-catalyzed coupling reactions as key methods in organic synthesis", Angew. Chem. Int. Ed., 49, 9047 (2010). https://doi.org/10.1002/anie.201006374
  13. E. I. Negishi, "Palladium-or nickel-catalyzed cross coupling. A new selective method for carbon-carbon bond formation", Acc. Chem. Res., 15, 340 (1982). https://doi.org/10.1021/ar00083a001
  14. G. Wang, Jintao Bai, Y. Wang, Z. Ren, and Jinbo Bai, "Prepartion and electrochemical performance of a cerium oxidegraphene nanocomposite as the anode material of a lithium ion battery", Scripta Mater., 65, 339 (2011). https://doi.org/10.1016/j.scriptamat.2011.05.001
  15. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonons, I. V. Grigorieva, and A. A. Firson, "Electric field effect in atomically thin carbon films", Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  16. H. Gao, F. Xiao, C. B. Ching, and H. Duan, "One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection", Appl. Mater. Interfaces, 3, 3049 (2011). https://doi.org/10.1021/am200563f
  17. M. Zhu, P. Chen, and M. Liu, "Graphene oxide enwrapped Ag/AgX (X=Br, Cl) nanocomposite as a highly efficiedt visible-light plasmonic photocatalyst", ACS Nano, 5, 4529 (2011). https://doi.org/10.1021/nn200088x
  18. W. Lu, R. Ning, X. Qin, Y. Zhang, G. Chang, and S. Liu, "Synthesis of Au nanoparticles decorated graphene oxide nanosheets: nancovalent functionalization by tween 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol", J. Hazard. Mater., 197, 320 (2011). https://doi.org/10.1016/j.jhazmat.2011.09.092
  19. Y. Li, Y. Yu, J. G. Wang, J. Song, Q. Li, M. Dong, and C. Liu, "CO oxidation over graphene supported palladium catalyst", Appl. Catal. B-Environ., 125, 189 (2012). https://doi.org/10.1016/j.apcatb.2012.05.023
  20. X. Zhou, X. Huang, X. Qi, S. Wu, C. Xue, F. Y. C. Boey, Q. Yan, P. Chen, and H. Zhang, "In situ chemical synthesis of $SnO_2$-graphene nanocomposite as anode materials for lithium-ion batteries", J. Phys. Chem. C., 113, 10842 (2009). https://doi.org/10.1021/jp903821n
  21. F. Y. Kong, X. R. Li, W. W. Zhao, J. J. Xu, and H. Y. Chen, "Graphene oxide-thionine-Au nanostructure composites: preparation and applications in non-enzymatic glucose sensing", Electrochem. Commun., 14, 59 (2012). https://doi.org/10.1016/j.elecom.2011.11.004

Acknowledgement

Supported by : Sahmyook University