V2-F 난류 모델의 터보기계 유동 해석 적용

DOI QR코드

DOI QR Code

박재현;손동경;김창현;백제현
Park, Jae Hyeon;Sohn, Dong Kyung;Kim, Chang Hyun;Baek, Je Hyun

  • 투고 : 2015.09.24
  • 심사 : 2016.01.22
  • 발행 : 2016.02.01

초록

터보기계 내부 유동장은 역압력구배, 고속 유동으로 인해 매우 복잡하며, 이를 해석하기 위해 보다 정교한 난류 모델이 요구된다. 유동 해석을 위해 대수모델, 2-방정식 와점도 모델 등이 널리 사용되고 있으나, 매우 복잡한 유동을 모사하는데 어려움이 있다. 본 연구에서는 복잡한 유동에서의 예측성능이 우수하다고 알려진 Durbin의 V2-F난류 모델을 자체 개발 코드인 T-Flow에 적용하였으며, 채널 및 압축기 캐스캐이드 유동 해석 결과를 이용하여 난류 모델을 검증하였다. 또한 저속 압축기 동익 해석을 통해 터보기계 내부 유동에서의 적용 가능성을 판단하였다. 그 결과, V2-F난류 모델은 1-방정식, 2방정식 난류 모델보다 우수한 블레이드 표면 압력 분포 예측성능을 보였다.

키워드

전산유체역학;V2-F난류 모델;축류 압축기;이차유동;다중블록

참고문헌

  1. Chima, R. V., Giel, P. W. and Boyle, R. J., 1993, "An Algebraric Turbulence Model for Three Dimensional Viscous Flows," NASA TM-105931.
  2. Menter, F. R., 1992, "Performance of Popular Turbulence Models for Attached and Seperated Adverse Pressure Gradient Flows," AIAA Journal, Vol. 30, No. 8, pp. 2066-2071. https://doi.org/10.2514/3.11180
  3. Menter, F. R., 1994, "Two-equation Eddy-viscosity Turbulence Models for Engineering Applications," AIAA Journal, Vol. 32, No. 8, pp. 1598-1605. https://doi.org/10.2514/3.12149
  4. Garg, V. K. and Ameri, A. A., 2001, "Two-equation Turbulence Models for Prediction of Heat Transfer on a Transonic Turbine Blade," Inter. J. of Heat and Fluid Flow, Vol. 22, pp. 593-602. https://doi.org/10.1016/S0142-727X(01)00128-X
  5. Park, J. Y., Chung. H. T. and Baek, J. H., 2003, "Tip Leakage Flow on the Transonic Compressor Rotor," Trans. Korean Soc. Mech. Eng. B, Vol. 27, No. 1, pp. 84-94. https://doi.org/10.3795/KSME-B.2003.27.1.084
  6. Park, J. I., Choi, M. S. and Baek, J. H., 2006, "Numerical Studiy on the Clocking Effect in A 1.5 Stage Axial Turbine," Journal of Computational Fluids Engineering(KSCFE), Vol. 11, No. 4, pp. 1-8.
  7. Choi, M. S., Park, J. Y. and Baek, J. H., 2005, "Effects of the Inlet Boundary Layer Thickness on the Flow in an Axial Compressor (I) - Hub Corner Stall and Tip Leakage Flow," Trans. Korean Soc. Mech. Eng. B, Vol. 29, No. 8, pp. 948-955. https://doi.org/10.3795/KSME-B.2005.29.8.948
  8. Deck, S., Duveau, P., Espiney, P. and Guillen, P., 2002, "Development and Application of Spalart- Allmaras One Equation Turbulence Model to Threedimensional Supersonic Complex Configurations," Aerospace Science and Technology 6, pp.171-183. https://doi.org/10.1016/S1270-9638(02)01148-3
  9. Catris, S. and Aupoix, B., 2000, "Density Corrections for Turbulence Models," Aerospace Science and Technology 4, pp. 1-11. https://doi.org/10.1016/S1270-9638(00)00112-7
  10. Durbin, P. A., 1995, "Separated Flow Computation with the k-e-v2 Model," AIAA Journal, Vol. 33, No. 4, pp. 659-664. https://doi.org/10.2514/3.12628
  11. Lien, F. S. and Durbin, P. A., 1996, "Non-linear k-e-v2 Modelling with Application to High-lift," Proceedings of the Summer Program, Stanford Univ., pp. 5-12.
  12. Durbin, P. A., 1996, "On the k-e Stagnation Point Anomaly," International Journal of Heat and Fluid Flow, Vol. 17, pp.89-90. https://doi.org/10.1016/0142-727X(95)00073-Y
  13. Laurence, D. R., 2004, "A Robust Formulation of the V2-F Model," Flow Turbulence and Combustion, Vol. 73, pp. 219-185.
  14. Davidson, L., 2003, "Modifications of the V2-F Model for Computing the Flow in a 3D Wall Jet," Turbulence Heat and Mass Transfer, Vol. 4, pp. 577-584.
  15. Laufer, J., 1951, "Investigation of Turbulent Flow in a Two-dimensional Channel," NASA-TN-2123.
  16. hoheisel, H. and Seyb, N. J., 1990, "High Subsonic Compressor Cascade DAC Report," Test Case for Computation of Internal Flows in Aero Engine Components, pp. 51-69.
  17. Wanger, J. H., Dring, R.P. and Joslyn, H.D., 1983, "Axial Compressor Middle Stage Secondary Flow Study," NASA CR-3701.

과제정보

연구 과제 주관 기관 : 두산중공업, 포항공과대학교