DOI QR코드

DOI QR Code

Mechanical Characteristics and Crack-Healing of ZIRCONIA(ZrO2) Composite Ceramics with SiC and TiO2

SiC와 TiO2 첨가에 따르는 ZrO2의 기계적 특성 및 균열 치유

  • Nam, Ki Woo (Dept. of Materials Science and Engineering, Pukyong Nat'l Univ.)
  • 남기우 (부경대학교 재료공학과)
  • Received : 2015.07.03
  • Accepted : 2016.01.25
  • Published : 2016.03.01

Abstract

This study evaluated the mechanical properties and crack-healing abilities of zirconia composite ceramics. The six kinds of specimens used were: partially stabilized zirconia (Z) and five zirconia composite (ZS, ZST1, ZST2, ZST3, and ZST5) with SiC and $TiO_2$. There was not a large difference between the Vickers hardness of the six types of zirconia ceramics. The bending strength of the ZS specimen degraded rapidly, but the zirconia specimens with $TiO_2$ (ZST1, ZST2, ZST3, and ZST5) showed improved strength. Therefore, it was determined that the bending strength is affected by the crystallization, which is due to the addition of SiC and $TiO_2$. From the crack-healing conditions having the highest bending strength, monolithic zirconia retained its cracks, while the specimens of four types with SiC healed their cracks.

References

  1. Rhodes, W. H., 1981, "Agglomerate and Particle Size Effects on Sintering Yttria-stabilized Zirconia," Journal of the American Ceramic Society, Vol. 64, pp. 19-22. https://doi.org/10.1111/j.1151-2916.1981.tb09552.x
  2. Wang, C. P., Do, K. B., Beasley, M. R., Geballe, T. H. and Hammond, R. H., 1997, "Deposition of In-plane Textured MgO on Amorphous $Si_3N_4$ Substrates by Ion-beam-assisted Deposition and Comparisons with Ion-beam-assisted Deposited Yttria-stabilized-zirconia," Applied Physics Letters, Vol. 71, pp. 2955-2957. https://doi.org/10.1063/1.120227
  3. Reade, R. P., Berdahl, P., Russo, R. E. and Garrison, S. M., 1992, "Laser Deposition of Biaxially Textured Yttria-stabilized Zirconia Buffer Layers on Polycrystalline Metallic Alloys for High Critical Current Y-Ba-Cu-O Thin Films," Applied Physics Letters, Vol. 61, pp. 2231-2233. https://doi.org/10.1063/1.108277
  4. Dow. W. P., Wang, Y. P. and Huang, T. J., 1996, "Yttria-stabilized Zirconia Supported Copper Oxide Catalyst: I. Effect of Oxygen Vacancy of Support on Copper Oxide Reduction," Journal of Catalysis, Vol. 160, pp. 155-170. https://doi.org/10.1006/jcat.1996.0135
  5. Owena, D. M. and Chokshib, A. H., 1998, "The High Temperature Mechanical Characteristics of Superplastic 3 mol% Yttria Stabilized Zirconia," Acta Materialia, Vol. 46, pp. 667-679. https://doi.org/10.1016/S1359-6454(97)00251-6
  6. Perednisa, D., Wilhelmb, O., Pratsinisb, S. E. and Gaucklera, L. J., 2005, "Morphology and Deposition of Thin Yttria-stabilized Zirconia Films Using Spray Pyrolysis," Thin Solid Films, Vol. 474, pp. 84-95. https://doi.org/10.1016/j.tsf.2004.08.014
  7. Choi, S. R. and Tikara, V., 1992, "Crack-healing Behavior of Hot-pressed Silicon Nitride due to Oxidation," Scripta. Metall. Mater., Vol. 26, pp 1263-1268. https://doi.org/10.1016/0956-716X(92)90574-X
  8. Ogasawara, T., Hori, T. and Okada, A., 1994, "Threshold Stress Intensity for Oxidative Crack Healing in Sintered Silicon Nitride," J. Mat. Sci. Lett., Vol. 13, pp. 404-406. https://doi.org/10.1007/BF00278010
  9. Zhang, Y. Z., Edwards, L. and Plumbridge, W. J., 1998, "Crack Healing in a Silicon Nitride Ceramics," J. Am. Ceram. Soc., Vol. 81, pp 1861-1868.
  10. Ando, K., Ikeda, T., Sato, S., Yao, F. and Kobayashi, Y., 1998, "A Preliminary Study on Crack Healing Behaviour of $Si_3N_4/SiC$ Composite Ceramics," Fatigue Fract. Engng. Mater. Struct., Vol. 21, pp 119-122.
  11. Ando, K., Tsuji, K., Hirasawa, T., Kobayashi, Y., Chu, M. C. and Sato, S., 1999, "Crack Healing Behavior and High Temperature Strength of Mullite/SiC Composite Ceramics," Journal of the Society of Materials Science, Japan, Vol. 48, pp. 489-494. https://doi.org/10.2472/jsms.48.489
  12. Ando, K., Houjyou, K., Chu, M. C., Takeshita, S., Takahashi, K., Sakamoto, S. and Sato, S., 2002, "Crack-healing Behaviour of $Si_3N_4/SiC$ Ceramics Under Stress and Fatigue Strength at the Temperature of Healing ($1000^{\circ}C$)," Journal of the European Ceramic Society, Vol. 22, pp. 1339-1346. https://doi.org/10.1016/S0955-2219(01)00435-6
  13. Lee, S. K., Ishida, W., Lee, S. Y., Nam, K. W. and Ando. K., 2005, "Crack-healing Behavior and Resultant Strength Properties of Silicon Carbide Ceramic," J. Eur. Ceram. Soc., Vol. Vol. 25, pp. 569-576. https://doi.org/10.1016/j.jeurceramsoc.2004.01.021
  14. Nam, K. W., Kim, H. S., Son, C. S., Kim, S. K. and Ahn, S. H., 2007, "Cracked-healing and Elevated Temperature Bending Strength of $Al_2O_3$ Composite Ceramics by an Amount of $Y_2O_3$," Trans. Korean Soc. Mech. Eng. A, Vol. 31, pp. 1108-1114. https://doi.org/10.3795/KSME-A.2007.31.11.1108
  15. Nam, K. W., Kim, M. K., Park, S. W., Ahn, S. H. and Kim, J. S., 2007, "Crack Healing Behavior and Bending Strength of $Si_3N_4/SiC$ Composite Ceramics by $SiO_2$ Colloidal," Materials Science and Engineering: A, Vol. 471, pp. 102-105. https://doi.org/10.1016/j.msea.2007.03.005
  16. Nam, K. W. and Kim, J. S., 2010, "Effect of a Colloidal $SiO_2$ Coating to Crack Healing and the Bending Strength of $Si_3N_4$ Ceramics," Journal of Ceramic Processing Research, Vol. 11, pp. 20-24.
  17. Nam, K. W. and Kim, J. S., 2010, "Critical Crack size of Healing Possibility of SiC Ceramics," Materials Science and Engineering A, Vol. 527, pp. 3236-3239. https://doi.org/10.1016/j.msea.2010.02.004
  18. Nam, K. W. 2010, "Crack-healing Behavior and Bending Strength of $Al_2O_3/SiC$ Composite Ceramics According to the Amount of Added $Y_2O_3$," Journal of Ceramic Processing Research, Vol. 11, pp. 471-474.
  19. Nam, K. W., Kim, J. S. and Park, S. W., 2010, "Crack-healing Behavior and Bending Strength Properties of SiC Ceramics Based on the Type of Additive $SiO_2$ Employed," International Journal of Modern Physics B, Vol. 24, pp. 2869-2874. https://doi.org/10.1142/S0217979210065775
  20. Nam, K. W. and Kim, E. S., 2012, "Healing Properties of SiC Ceramics According to Surface Roughness," Materials Science and Engineering A, Vol. 547, pp. 125-127. https://doi.org/10.1016/j.msea.2012.03.096

Cited by

  1. Composites Ceramics by Different Shot Size vol.40, pp.12, 2016, https://doi.org/10.3795/KSME-A.2016.40.12.987
  2. Effect of Organic Additives on Microstructure and Green Density of Zirconia Granules Using Water Solvent vol.24, pp.2, 2017, https://doi.org/10.4150/KPMI.2017.24.2.147