DOI QR코드

DOI QR Code

BUBBLE STABILIZATION OF CHEBYSHEV-LEGENDRE HIGH-ORDER ELEMENT METHODS FOR THE ADVECTION-DIFFUSION EQUATION

  • Kim, Philsu (Department of Mathematics, Kyungpook National University) ;
  • Kim, Sang Dong (Department of Mathematics, Kyungpook National University, Department of Mathematics, University of Wisconsin-Whitewater) ;
  • Lee, Yong Hun (Department of Mathematics(Institute of Pure and Applied Mathematics), Chonbuk National University)
  • Received : 2014.12.12
  • Published : 2016.03.31

Abstract

The bubble stabilization technique of Chebyshev-Legendre high-order element methods for one dimensional advection-diffusion equation is analyzed for the proposed scheme by Canuto and Puppo in [8]. We also analyze the finite element lower-order preconditioner for the proposed stabilized linear system. Further, the numerical results are provided to support the developed theories for the convergence and preconditioning.

Keywords

Chebyshev-Galerkin spectral method;bubble-stabilization;advection-diffusion equation;lower-order preconditioner

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. C. Baiocchi, F. Brezzi, and L. P. Franca, Virtual bubbles and Galerkin-least-squares type methods, Comput. Methods Appl. Mech. Engrg. 105 (1993), no. 1, 125-142. https://doi.org/10.1016/0045-7825(93)90119-I
  2. F. Brezzi, M.-O. Bristeau, L. P. Franca, M. Mallet, and G. Roge, A relationship be-tween stabilized finite element methods and the Galerkin Method with bubble functions, Comput. Methods Appl. Mech. Engrg. 96 (1992), no. 1, 117-130. https://doi.org/10.1016/0045-7825(92)90102-P
  3. A. N. T. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convected dominated flows with a particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 32 (1982), no. 1-3, 199-259. https://doi.org/10.1016/0045-7825(82)90071-8
  4. C. Canuto, Spectral methods and a maximum principle, Math. Comp. 51 (1988), no. 184, 615-629. https://doi.org/10.1090/S0025-5718-1988-0930226-2
  5. C. Canuto, Stabilization of spectral methods by finite element bubble functions, Comput. Methods Appl. Mech. Engrg. 116 (1994), no. 1-4, 13-26. https://doi.org/10.1016/S0045-7825(94)80004-9
  6. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods. Funda-mentals in Single Domains, Springer-Verlag, Berlin, 2006.
  7. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods. Evolution to Complex Geometries and Applications to Flid Dynamics, Springer-Verlag, Berlin, 2007.
  8. C. Canuto and G. Puppo, Bubble stabilization of spectral Legendre methods for the advection-diffusion equation, Comput. Methods Appl. Mech. Engrg. 118 (1994), no. 3-4, 239-263. https://doi.org/10.1016/0045-7825(94)90002-7
  9. S. D. Kim, Piecewise bilinear preconditioning of high-order finite element methods, Electron. Trans. Numer. Anal. 26 (2007), 228-242.
  10. S. Kim and S. D. Kim, Preconditioning on high-order element methods using Chebyshev-Gauss-Lobatto nodes, Appl. Numer. Math. 59 (2009), no. 2, 316-333. https://doi.org/10.1016/j.apnum.2008.02.007
  11. S. D. Kim and S. Parter, Preconditioning Chebyshev spectral collocation method for elliptic partial differential equations, SIAM J. Numer. Anal. 33 (1996), no. 6, 2375-2400. https://doi.org/10.1137/S0036142994275998
  12. J. H. Lee, Bubble Stabilization of Chebyshev Spectral Method for Advection-Diffusion Equation, Ph.D. Thesis, KAIST, Korea, 1988.
  13. H. Ma, Chebyshev-Legendre spectral viscosity method for nonlinear conservation laws, SIAM J. Numer. Anal. 35 (1998), no. 3, 869-892. https://doi.org/10.1137/S0036142995293900