DOI QR코드

DOI QR Code

A FINITE PRESENTATION FOR THE TWIST SUBGROUP OF THE MAPPING CLASS GROUP OF A NONORIENTABLE SURFACE

  • Stukow, Michal (Institute of Mathematics, University of Gdansk)
  • Received : 2015.04.10
  • Published : 2016.03.31

Abstract

Let $N_{g,s}$ denote the nonorientable surface of genus g with s boundary components. Recently Paris and Szepietowski [12] obtained an explicit finite presentation for the mapping class group $\mathcal{M}(N_{g,s})$ of the surface $N_{g,s}$, where $s{\in}\{0,1\}$ and g + s > 3. Following this work, we obtain a finite presentation for the subgroup $\mathcal{T}(N_{g,s})$ of $\mathcal{M}(N_{g,s})$ generated by Dehn twists.

Keywords

mapping class group;nonorientable surface;twist subgroup;presentation

Acknowledgement

Supported by : NCN

References

  1. J. S. Birman, Automorphisms of the fundamental group of a closed, orientable 2-manifold, Proc. Amer. Math. Soc. 21 (1969), no. 2, 351-354.
  2. D. R. J. Chillingworth, A finite set of generators for the homeotopy group of a non-orientable surface, Math. Proc. Cambridge Philos. Soc. 65 (1969), 409-430. https://doi.org/10.1017/S0305004100044388
  3. S. Gervais, A finite presentation of the mapping class group of a punctured surface, Topology 40 (2001), no. 4, 703-725. https://doi.org/10.1016/S0040-9383(99)00079-8
  4. S. P. Humphries, Generators for the mapping class group, In Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977), pp. 44-47, Lecture Notes in Math., 722, Springer, Berlin, 1979.
  5. D. L. Johnson, Homeomorphisms of a surface which act trivially on homology, Proc. Amer. Math. Soc. 75 (1979), no. 1, 119-125. https://doi.org/10.1090/S0002-9939-1979-0529227-4
  6. M. Korkmaz, Mapping class groups of nonorientable surfaces, Geom. Dedicata 89 (2002), 109-133.
  7. C. Labruere and L. Paris, Presentations for the punctured mapping class groups in terms of Artin groups, Algebr. Geom. Topol. 1 (2001), 73-114. https://doi.org/10.2140/agt.2001.1.73
  8. W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math. 76 (1962), 531-540. https://doi.org/10.2307/1970373
  9. W. B. R. Lickorish, Homeomorphisms of non-orientable two-manifolds, Math. Proc. Cambridge Philos. Soc. 59 (1963), 307-317. https://doi.org/10.1017/S0305004100036926
  10. W. B. R. Lickorish, A finite set of generators for the homeotopy group of a 2-manifold, Math. Proc. Cambridge Philos. Soc. 60 (1964), 769-778. https://doi.org/10.1017/S030500410003824X
  11. M. Matsumoto, A presentation of mapping class groups in terms of Artin groups and geometric monodromy of singularities, Math. Ann. 316 (2000), no. 3, 401-418. https://doi.org/10.1007/s002080050336
  12. L. Paris and B. Szepietowski, A presentation for the mapping class group of a nonori-entable surface, arXiv:1308.5856v1 [math.GT], 2013.
  13. M. Stukow, The twist subgroup of the mapping class group of a nonorientable surface, Osaka J. Math. 46 (2009), no. 3, 717-738.
  14. M. Stukow, Generating mapping class groups of nonorientable surfaces with boundary, Adv. Geom. 10 (2010), no. 2, 249-273.
  15. M. Stukow, A finite presentation for the mapping class group of a nonorientable surface with Dehn twists and one crosscap slide as generators, J. Pure Appl. Algebra 218 (2014), no. 12, 2226-2239. https://doi.org/10.1016/j.jpaa.2014.03.013
  16. B. Wajnryb, A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983), no. 2-3, 157-174. https://doi.org/10.1007/BF02774014