귤피 펙틴 유래 효소적 가수분해물의 세포 보호 효과

DOI QR코드

DOI QR Code

권순우;고현주;배준태;김진화;이근수;표형배
Kwon, Soon Woo;Ko, Hyun Ju;Bae, Jun Tae;Kim, Jin Hwa;Lee, Geun Soo;Pyo, Hyeong Bae

  • 투고 : 2015.12.23
  • 심사 : 2016.03.15
  • 발행 : 2016.03.30

초록

Pectin은 식물 세포벽의 주요성분으로 과실이나 채소류의 세포막이나 세포막 사이의 엷은 층에 존재하며, 고점도의 수용성 다당체로 염과 pH에 의한 점도 변화가 심하며, 알코올류와 만나 gelation 되는 특징을 가지고 있다. 식품분야에서 펙틴은 점도의 증가 및 겔 형성제로 사용되어 왔으나, 화장품 분야에서는 그 사용이 극히 제한적이었다. 본 연구에서는 pectin 효소 분해물의 분해 정도 및 분자량 분포를 정확히 확인하기 위해, HPLC (GPC)를 이용한 분석 조건을 확립하였으며, 생물 전환 공정을 통해 저분자량 pectin oligomer가 형성되는 것을 확인하였다. 그리고, 2종의 효소에 대한 저분자량 pectin oligomer 생산 최적 조건 실험을 진행하여 최적 생산 조건을 확립하였으며, 이로 부터 제조한 pectin 효소분해물에서 저분자량 pectin oligomer를 선별적으로 분리하는 공정도 개발하였다. 이러한 공정을 통해 제조된 저분자량 pectin oligomer 소재 LMPH A 와 B는 약 200 ~ 2,700 Da 정도의 분자량 분포를 가지는 것으로 확인되었다. LMPH A와 B의 생리활성을 확인한 결과, 2종 모두 항산화 활성을 보였다. 게다가, 이들이 pectin 및 D-galacturonic acid 보다 상대적으로 우수하며, 농도의존적으로 증가함을 보였다. 또한 자외선(UVB)에 의한 피부세포의 광손상 및 이로 인한 apoptosis를 방어하는 효과를 나타내었다. 세포 활성화 효과 측정결과는 LMPH A, B 모두 0.025% 이상의 농도에서 세포 활성화 효과를 보였으며, 농도가 0.5%에 이를 때까지 농도 의존적으로 증가하는 것을 확인할 수 있었다. 특히, LMPH B의 경우, 0.5% 농도에서 약 30%, LMPH A도 약 22%의 매우 우수한 세포 활성화 효과를 가지는 것으로 확인되었다. 결론적으로, 본 연구를 통해 개발된 2종의 LMPH가 우수한 생리활성과 동시에 우수한 안전성을 보임으로써, 향후 화장품 소재로 응용 가능성이 매우 높을 것으로 기대된다.

키워드

pectin;enzymatic hydrolysis;UVB;photo-damage

참고문헌

  1. N. M. Lyons and N. M. O'Brien, Modulatory effects of an algal extract containing astaxanthin on UVA-irradiated cells in culture, J. Dermatol. Sci., 30(1), 73 (2002). https://doi.org/10.1016/S0923-1811(02)00063-4
  2. B. A. Gilchrest, M. Garmyn, and M. Yaar, Aging and photoaging affect gene expression in cultured human keratinocytes, Arch. Dermatol., 130(1), 82 (1994). https://doi.org/10.1001/archderm.1994.01690010086013
  3. A. L. Norins, Free radical formation in the skin following exposure to ultraviolet light, J. Invest. Dermatol., 39, 445 (1962). https://doi.org/10.1038/jid.1962.137
  4. T. Yoshikawa, V. Rae, W. Bruins-Slot, J. W. Van den Berg, J. R. Taylor, and J. W. Streilein, Susceptibility to effects of UVB radiation on induction of contact hypersensitivity as a risk factor for skin cancer in humans, J. Invest. Dermatol., 95(5), 530 (1990). https://doi.org/10.1111/1523-1747.ep12504877
  5. C. K. Donawho, H. K. Muller, C. D. Bucana, and M. L. Kripke, Enhanced growth of murine melanoma in ultraviolet-irradiated skin is associated with local inhibition of immune effector mechanisms, J. Immunol., 157(2), 781 (1996).
  6. M. Goihman-Yahr, Skin aging and photoaging: an outlook, Clin. Dermatol., 14(2), 153 (1996). https://doi.org/10.1016/0738-081X(95)00150-E
  7. Y. Miyachi, Photoaging from an oxidative standpoint, J. Dermatol. Sci., 9(2), 79 (1995). https://doi.org/10.1016/0923-1811(94)00363-J
  8. D. P. Jin, C. Li, Y. Cong, H. Yang, W. X. Zhang, W. Guan, and Y. Ma, Inhibitory effects of vitamin E on UVB-induced apoptosis of chicken embryonic fibroblasts, Cell Biol. Int., 35(4), 381 (2011). https://doi.org/10.1042/CBI20090285
  9. F. H. Igney and P. H. Krammer, Death and anti-death: tumour resistance to apoptosis, Nat. Rev. Cancer., 2(4), 277 (2002). https://doi.org/10.1038/nrc776
  10. S. S. Leonard, J. J. Bower, and X. Shi, Metal-induced toxicity, carcinogenesis, mechanisms and cellular responses, Mol. Cell Biochem., 255(1-2), 3 (2004). https://doi.org/10.1023/B:MCBI.0000007255.72746.a6
  11. J. J. Batista, A. S. Martins, L. Moro, J. S. Resende, N. R. S. Martins, and A. C. Vasconcelos, Apoptosis and expression of VP2 and GADPH in an experimental infectious bursal disease in SPF chicks, Arq. Bras. Med. Vet. Zootec., 59(2), 313 (2007). https://doi.org/10.1590/S0102-09352007000200007
  12. C. Y. Liu, C. F. Lee, and Y. H. Wei, Role of reactive oxygen species-elicited apoptosis in the pathophysiology of mitochondrial and neurodegenerative diseases associated with mitochondrial DNA mutations, J. Formos. Med. Assoc., 108(8), 599 (2009). https://doi.org/10.1016/S0929-6646(09)60380-6
  13. T. Hori, T. Kondo, M. Kanamori, Y. Tabuchi, R. Ogawa, Q. L. Zhao, K. Ahmed, T. Yasuda, S. Seki, K. Suzuki, and T. Kimura, Ionizing radiation enhances tumor necrosis ractor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through up-regulations of death receptor 4 (DR4) and death receptor 5 (DR5) in human osteosarcoma cells, J. Orthop. Res., 28(6), 739 (2010).
  14. F. M. Rattis, M. Concha, C. Dalbiez-Gauthier, P. Courtellemont, D. Schmitt, and J. Pequet-Navarro, Effects of ultraviolet B irradiation on human Langerhans cells: functional alteration on CD86 upregulation and induction of apoptotic cell death, J. Invest. Dermatol., 111(3), 373 (1998). https://doi.org/10.1046/j.1523-1747.1998.00320.x
  15. C. Petit-Frere, E. Capulas, J. E. Lowe, L. Koulu, R. J. Marttila, N. G. Jaspers, P. H. Clingen, M. H. Green, and C. F. Arlett, Ultraviolet-B induced apoptosis and cytokine release in xeroderma pigmentosum keratinocytes, J. Invest. Dermatol., 115(4), 687 (2000). https://doi.org/10.1046/j.1523-1747.2000.00093.x
  16. J. P. Vincken, H. A. Schols, R. J. Oomen, M. C. McCann, P. Ulvskov, A. G. Voragen, and R. G. Visser, If homogalcturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture, Plant Physiology, 132(4), 1781 (2003). https://doi.org/10.1104/pp.103.022350
  17. C. D. May, Handbook of hydrocolloids, 169, Woodhead Publishing Limited, Cambridge, England, (2000).
  18. C. Rolin, B. Nielsen, and P. Glahn, Polysaccharides: structural diversity and functional versatility, 377, Marcel Dekker, New York (1998).
  19. M. S. Blois, Antioxidant determinations by the use of a stable free radical, Nature, 181, 1199 (1958). https://doi.org/10.1038/1811199a0
  20. K. Manderson, M. Pinart, K. M. Tuohy, W. E. Grace, A. T. Hotchkiss, W. Widmer, M. P. Yadhav, G. R. Gibson, and R. A. Rastall, In vitro determination of prebiotic properties of oligosaccharides derived from an orange juice manufacturing by-product stream, Appl. Environ. Microbiol., 71(12), 8383 (2005). https://doi.org/10.1128/AEM.71.12.8383-8389.2005
  21. S. F. Ahrabi, G. Madsen, K. Dyrstad, S. A. Sande, and C. Graffner, Development of pectin matrix tablets for colonic delivery of model drug ropivacaine, Eur. J. Pharm. Sci., 10(1), 43 (2000). https://doi.org/10.1016/S0928-0987(99)00087-1
  22. M. Ashford, J. Fell, D. Attwood, H. Sharma, and P. Woodhead, An evaluation of pectin as a carrier for drug targeting to the colon, J. Control Release, 26(3), 213 (1993). https://doi.org/10.1016/0168-3659(93)90188-B
  23. M. Ashford, J. Fell, D. Attwood, H. Sharma, and P. Woodhead, Studies on pectin formulations for colonic drug delivery, J. Control Release, 30(3), 225 (1994). https://doi.org/10.1016/0168-3659(94)90028-0
  24. J. P. Chun and D. J. Huber, Polygalacturonase-mediated solubilization and depolymerization of pectic polymers in tomato fruit cell walls, Plant Physiol., 117(4), 1293 (1998). https://doi.org/10.1104/pp.117.4.1293
  25. M. B. Gewali, J. Maharjan, S. Thapa, and J. K. Shrestha, Studies on polygalacturonase from Aspergillus flavus, Sci. World., 5(5), 19 (2007).
  26. D. B. Pedrolli, E. Gomes, R. Monti, and E. C. Carmona, Studies on productivity and characterization of polygalacturonase from aspergillus giganteus submerged culture using citrus pectin and orange waste, Appl. Biochem. Biotechnol., 144(2), 191 (2008). https://doi.org/10.1007/s12010-007-8059-1
  27. G. Mandalari, R. N. Bennett, A. R. Kirby, R. B. Lo Curto, G. Bisignano. K. W. Waldron, and C. B. Faulds, Enzymatic hydrolysis of flavonoids and pectic oligosaccharides from bergamot (Citrus bergamia risso) peel, J. Agric. Food Chem., 54(21), 8307 (2006). https://doi.org/10.1021/jf0615799
  28. S. M. Kral and R. F. McFeeters, Pectin hydrolysis: effect of temperature, degree of methylation, ph, and calcium on hydrolysis rates, J. Agric. Food Chem., 46(4), 1311 (1998). https://doi.org/10.1021/jf970473y
  29. K. Belafi-Bako, M. Eszterle, K. Kiss, N. Nemestothy, and L. Gubicza, Hydrolysis of pectin by Aspergillus niger polygalacturonase in a membrane bioreactor, J. Food Eng., 78(2), 438 (2007). https://doi.org/10.1016/j.jfoodeng.2005.10.012

과제정보

연구 과제 주관 기관 : Ministry of Trade, Industry & Energy