Advanced Nano-Structured Materials for Photocatalytic Water Splitting

Chandrasekaran, Sundaram;Chung, Jin Suk;Kim, Eui Jung;Hur, Seung Hyun

  • Received : 2015.11.02
  • Accepted : 2016.02.05
  • Published : 2016.03.31


The production of oxygen and hydrogen from solar water splitting has been considered to be an ultimate solution for energy and environmental issues, and over the past few years, nano-sized semiconducting metal oxides alone and with graphene have been shown to have great promise for use in photocatalytic water splitting. It is challenging to find ideal materials for photoelectrochemical water splitting, and these have limited commercial applicability due to critical factors, including their physico-chemical properties, the rate of charge-carrier recombination and limited light absorption. This review article discusses these main features, and recent research progress and major factors affect the performance of the water splitting reaction. The mechanism behind these interactions in transition metal oxides and graphene based nano-structured semiconductors upon illumination has been discussed in detail, and such characteristics are relevant to the design of materials with a superior photocatalytic response towards UV and visible light.


Photocatalyst;graphene nanocomposites;Water splitting;Hydrogen energy storage;Photoelectrochemical cell


  1. Y. H. Ng, A. wase, A. Kudo and R. Amal, J. Phys. Chem. Lett., 1, 2607(2010).
  2. C. K. Chen, Y.-P. Shen, H. M. Chen, C.-J. Chen, T.-S. Chan, J.-F. Lee and and R.-S. Liu, Eur. J. Inorg. Chem., 2014, 773(2014).
  3. Y. Hou, F. Zuo, A. Dagg and P. Feng, Nano Lett.,12, 6464(2012).
  4. Z. Mou, S.Yin, M. Zhu, Y. Du, X. Wang, P. Yang, J. Zheng and C. Lu, Phys. Chem. Chem. Phys., 15, 2793(2013).
  5. V. Dhand, K. Y. Rhee, H. J. Kim and D. H. Jung. J. Nanomater., 2013,14(2011).
  6. S. Morales-Torres, L. M. Pastrana-Martínez, J. L. Figueiredo, J. L. Faria and A. M. T. Silva, Environ. Sci. Pollut. Res., 19, 3676(2012).
  7. V. Štengl, S. Bakardjieva, T. M. Grygar, J. Bludská and M. Kormunda, Chem. Cent. J., 7, 41(2013).
  8. L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu and X. Han, ACS Appl. Mater. Interfaces, 5, 3085(2013).
  9. J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, S. Wang and L. Jiang, ACS Nano, 5, 590(2011).
  10. W. Fan, Q. Lai, Q. Zhang and Y. Wang, J. Phys. Chem. C., 115, 10694(2011).
  11. X.-Y. Zhang, H.-P. Li, X.-L Cui and Y. Lin, J. Mater. Chem., 20, 2801(2010).
  12. Q. Xiang, B. Cheng and J. Yu, Angew. Chem. Int. Ed., 54, 11350(2015).
  13. Z. Chen, S. Liu, M.-Q. Yang and Y.-J. Xu, ACS Appl. Mater. Interfaces, 5, 4309(2013).
  14. S. Chandrasekaran, S. H. Hur, E. J. Kim, B. Rajagopalan, K. F. Babu, V. Senthilkumar, J. S. Chung, W. M. Choi and Y. S. Kim, RSC. Adv., 5, 29159(2015).
  15. T. Peng, K. Li, P. Zeng, Q. Zhang and X. Zhang, J. Phys. Chem. C., 116, 22720(2012).
  16. L. Jia, D.-H. Wang, Y.-X. Huang, A.-W. Xu and H.-Q. Yu, J. Phys. Chem. C., 115, 11466(2011).
  17. Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan and J. R. Gong, J. Am. Chem. Soc., 133, 10878(2011).
  18. A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong and Y. Liu, Adv. Mater., 22, 103(2010).
  19. Y.-S. Hu, A. Kleiman-Shwarsctein, A. J. Forman, D. Hazen, J.-N. Park and E. W. McFarland, Chem. Mater., 20, 3803(2008).
  20. C. G. Morales-Guio, M. T. Mayer, A. Yella, S. D. Tilley, M. Grätzel and X. Hu, J. Am. Chem. Soc., 137, 9927(2015).
  21. K. Ehrensberger, A. Frei, P. Kuhn, H. R. Oswald and P. Hug, Solid State Ionics, 78, 151(1995).
  22. H. J. Kim, S. H. Lee, A. A. Upadhye, I. Ro, M. I. Tejedor-Tejedor, M. A. Anderson, W. B. Kim and G. W. Huber, ACS Nano, 8, 10756(2014).
  23. K. Kim, P. Thiyagarajan, H.-J. Ahn, S.-I Kim and J.-H. Jang, Nanoscale, 5, 6254(2013).
  24. S. Chandrasekaran, S. H. Hur, W. M. Choi, J. S. Chung and E. J. Kim, Mater. Lett.,160, 92(2015).
  25. Y.-C. Pu, G. Wang, K.-D Chang, Y. Ling, Y.-K. Lin, B. C. Fitzmorris, C.-M. Liu, X. Lu, Y. Tong, J. Z. Zhanf, Y.-J. Hsu and Y. Li, Nano Lett., 13, 3817(2013).
  26. J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Yu, Z. Zhang, Y. Mao, S. C. L. Wang, Y. Shen and Y. Tong, Sci. Rep., 3, 1(2013).
  27. H. Gao, C. Liu, H. E. Jeong and P. Yang, ACS Nano., 6, 234(2012).
  28. A. A. Tahir, K. U. Wijayantha, S. Saremi-Yarahmadi, M. Mazhar and V. McKee, Chem. Mater., 21, 3763(2009).
  29. T. Wang, R. Lv, P. Zhang, C. Li and J. Gong, Nanoscale, 7, 77(2015).
  30. M. Wu, W.-J. Chen, Y.-H. Shen, F.-Z. Huang, C.-H. Li and S.-K. Li, ACS Appl. Mater. Interfaces, 6, 15052(2014).
  31. C. K. Chua and M. Pumera, Chem. Soc. Rev., 43, 291(2014).
  32. T.-F. Yeh, J. Cihláø, C.-Y. Chang, C. Cheng and H. Teng, Mater. Today, 16, 78(2013).
  33. V. C. Ferreira, M. R. Nunes, A. J. Silvestre and O. C. Monteiro, Mater. Chem. Phys., 142, 355(2013).
  34. J. Gong, W. Pu, C. Yang and J. Zhang, Catal. Commun., 36, 89(2013).
  35. Y. Li, Y. Xiang, S. Peng, X. Wang and L. Zhou, Electrochim. Acta., 87, 794(2013).
  36. Z. Xu and J. Yu, Nanoscale, 3, 3138(2011).
  37. L. Sun, J. Cai, Q. Wu, P. Huang, Y. Su and C. Lin, ýElectrochim. Acta., 108, 525(2013).
  38. Y. Yu, H.-H. Wu, B.-L. Zhu, S.-R. Wang, W.-P. Huang, S.-H. Wu S-H and S.-M Zhang, Catal. Lett., 125,168(2008).
  39. G. Yan, M. Zhang, J. Hou and J. Yang, Mater. Chem. Phys., 129, 553(2011).
  40. N. Lu, H. Zhao, J. Li, X. Quan and S. Chen, Sep. Purif. Technol., 62, 668(2008).
  41. Y. Qiu, S.-F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K.-H. Tsui, Y. Zhang, S. Yang and Z. Fan, Nano Lett., 14(4), 2123(2014).
  42. J. H. Park, S. Kim and A. J. Bard, Nano Lett., 6(1), 24(2006).
  43. H. Fei, Y. Yang, D. L. Rogow, X. Fan, S. R. Oliver. ACS Appl. Mater. Interfaces, 2, 974(2010).
  44. S. C. Warren, K. Voïtchovsky, H. Dotan, C. M. Leroy, M. Cornuz, F. Stellacci, C. Hébert,A. Rothschild and M. Grätzel , Nat. Mater., 12, 842(2013).
  45. S. K. Mohapatra, S. E. John, S. Banerjee and M. Misra, Chem. Mater., 21, 3048(2009).
  46. C. D. Bohn, A. K. Agrawal, E. C. Walter, M. D. Vaudin, A. A. Herzing, P. M. Haney, A. A. Talin and V. A. Szalai, J. Phys. Chem. C., 116, 15290(2012).
  47. V. Chakrapani, J. Thangala and M. K. Sunkara, Int. J. Hydrogen Energy., 34, 9050(2009).
  48. W. Rüttinger and G. C. Dismukes, Chem. Rev., 97(1), 1(1997).
  49. J. Li and N. Wu, Catal. Sci. Technol., 5, 1360(2015).
  50. X. Chen, S. Shen, L. Guo and S. S. Mao, Chem. Rev., 110, 6503(2010).
  51. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao and X. Chen, J. Mater. Chem. A, 3, 2485(2015).
  52. T.-F. Yeh, C.-Y. Teng, S.-J. Chen and H. Teng, Adv. Mater., 26, 3297(2014).
  53. H. M. Chen, C. K. Chen, Y.-C. Chang, C.-W. Tsai, R.-S. Liu, S.-F. Hu, W.-S. Chang and K.-H. Chen, Angew. Chem., 122, 6102(2010).
  54. X. Zhang, Y. Liu, S.-T. Lee, S. Yang and Z. Kang, Energy Environ. Sci., 7, 1409(2014).
  55. P. Hartmann, D.-K. Lee, B. M. Smarsly and J. Janek, ACS Nano., 4, 3147(2010).
  56. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes. Nano Lett., 5(1), 191(2005).
  57. I. S. Cho, Z. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo and X. Zheng, Nano Lett., 11(11), 4978(2011).
  58. M. Paulose, K. Shankar, S. Yoriya, H. E. PrakasamE, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald and C. A. Grimes. J. Phys. Chem. B, 110, 16179(2006).
  59. Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang and P. Wang, Nano Lett., 13(1), 14(2013).
  60. R. Dholam, N. Patel, M. Adami and A. Miotello, Int. J. Hydrogen Energy, 34, 5337(2009).
  61. A. Fujishima and K. Honda, Nature, 238, 37(1972).
  62. Y. Fan, D. Li, M. Deng, Y. Luo and Q. Meng. Front. Chem. China, 4(4), 343(2009).
  63. S. Shet, ECS Trans., 33, 15(2011).
  64. S. Chandrasekaran, J. Nanoeng. Nanomanuf., 1, 242(2011).
  65. L. Li, S. Chen, X. Wang, Y. Bando and D. Golberg, Energy Environ Sci., 5, 6040(2012).
  66. S. F. Hasany, A. Rehman, R. Jose and I. Ahmed, AIP Conf. Proc., 1502, 298(2012).
  67. S. Chandrasekaran, W. M. Choi, J. S. Chung, S. H. Hur and E. J. Kim, Mater. Lett., 136, 118(2014).
  68. S. Chandrasekaran and R. D. K. Misra, Mater. Technol., 28, 228(2013).
  69. M. Grätzel, Nature, 414, 338(2001).
  70. S. Chandrasekaran, Sol. Energy Mater. Sol. Cells., 109, 220(2013).
  71. J. Su, X. Feng, J. D. Sloppy, L. Guo and C. A. Grimes, Nano Lett., 11, 203(2011).

Cited by

  1. Highly enhanced visible light water splitting of CdS by green to blue upconversion vol.46, pp.40, 2017,
  2. Photocatalytic water splitting of TiO2 nanotubes powders prepared via rapid breakdown anodization sensitized with Pt, Pd and Ni nanoparticles 2018,
  3. Facile Hydrothermally Synthesized a Novel CdS Nanoflower/Rutile-TiO2 Nanorod Heterojunction Photoanode Used for Photoelectrocatalytic Hydrogen Generation vol.5, pp.9, 2017,
  4. High-efficient TiO2 NRs/BiOI NSs heterojunction photoanodes for photoelectrochemical water splitting vol.32, pp.13, 2017,
  5. A review on adsorption-enhanced photoreduction of carbon dioxide by nanocomposite materials 2017,
  6. / carbon sphere for high-performance supercapacitors pp.1753-5557, 2018,
  7. thin films: application to gas sensor and novel photovoltaic solar cell structure vol.33, pp.12, 2018,
  8. Development of a miniaturized injection cell for online electrochemistry–capillary electrophoresis–mass spectrometry vol.149, pp.9, 2018,
  9. Synthesis of zinc oxide microrod arrays and their performance as piezo-generators vol.33, pp.9, 2018,
  10. reduction and photoelectrochemical water splitting vol.6, pp.24, 2018,
  11. Porous carbons derived from tea-seed shells and their improved electrochemical performance in lithium-ion batteries and supercapacitors vol.33, pp.7, 2018,
  12. Z-scheme photocatalyst efficiently by visible-light driven vol.33, pp.6, 2018,


Grant : BK21플러스

Supported by : 울산대학교