DOI QR코드

DOI QR Code

Advanced Nano-Structured Materials for Photocatalytic Water Splitting

Chandrasekaran, Sundaram;Chung, Jin Suk;Kim, Eui Jung;Hur, Seung Hyun

  • Received : 2015.11.02
  • Accepted : 2016.02.05
  • Published : 2016.03.31

Abstract

The production of oxygen and hydrogen from solar water splitting has been considered to be an ultimate solution for energy and environmental issues, and over the past few years, nano-sized semiconducting metal oxides alone and with graphene have been shown to have great promise for use in photocatalytic water splitting. It is challenging to find ideal materials for photoelectrochemical water splitting, and these have limited commercial applicability due to critical factors, including their physico-chemical properties, the rate of charge-carrier recombination and limited light absorption. This review article discusses these main features, and recent research progress and major factors affect the performance of the water splitting reaction. The mechanism behind these interactions in transition metal oxides and graphene based nano-structured semiconductors upon illumination has been discussed in detail, and such characteristics are relevant to the design of materials with a superior photocatalytic response towards UV and visible light.

Keywords

Photocatalyst;graphene nanocomposites;Water splitting;Hydrogen energy storage;Photoelectrochemical cell

References

  1. Y. H. Ng, A. wase, A. Kudo and R. Amal, J. Phys. Chem. Lett., 1, 2607(2010). https://doi.org/10.1021/jz100978u
  2. C. K. Chen, Y.-P. Shen, H. M. Chen, C.-J. Chen, T.-S. Chan, J.-F. Lee and and R.-S. Liu, Eur. J. Inorg. Chem., 2014, 773(2014). https://doi.org/10.1002/ejic.201301310
  3. Y. Hou, F. Zuo, A. Dagg and P. Feng, Nano Lett.,12, 6464(2012). https://doi.org/10.1021/nl303961c
  4. Z. Mou, S.Yin, M. Zhu, Y. Du, X. Wang, P. Yang, J. Zheng and C. Lu, Phys. Chem. Chem. Phys., 15, 2793(2013). https://doi.org/10.1039/c2cp44270a
  5. V. Dhand, K. Y. Rhee, H. J. Kim and D. H. Jung. J. Nanomater., 2013,14(2011).
  6. S. Morales-Torres, L. M. Pastrana-Martínez, J. L. Figueiredo, J. L. Faria and A. M. T. Silva, Environ. Sci. Pollut. Res., 19, 3676(2012). https://doi.org/10.1007/s11356-012-0939-4
  7. V. Štengl, S. Bakardjieva, T. M. Grygar, J. Bludská and M. Kormunda, Chem. Cent. J., 7, 41(2013). https://doi.org/10.1186/1752-153X-7-41
  8. L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu and X. Han, ACS Appl. Mater. Interfaces, 5, 3085(2013). https://doi.org/10.1021/am303274t
  9. J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, S. Wang and L. Jiang, ACS Nano, 5, 590(2011). https://doi.org/10.1021/nn102767d
  10. W. Fan, Q. Lai, Q. Zhang and Y. Wang, J. Phys. Chem. C., 115, 10694(2011). https://doi.org/10.1021/jp2008804
  11. X.-Y. Zhang, H.-P. Li, X.-L Cui and Y. Lin, J. Mater. Chem., 20, 2801(2010). https://doi.org/10.1039/b917240h
  12. Q. Xiang, B. Cheng and J. Yu, Angew. Chem. Int. Ed., 54, 11350(2015). https://doi.org/10.1002/anie.201411096
  13. Z. Chen, S. Liu, M.-Q. Yang and Y.-J. Xu, ACS Appl. Mater. Interfaces, 5, 4309(2013). https://doi.org/10.1021/am4010286
  14. S. Chandrasekaran, S. H. Hur, E. J. Kim, B. Rajagopalan, K. F. Babu, V. Senthilkumar, J. S. Chung, W. M. Choi and Y. S. Kim, RSC. Adv., 5, 29159(2015). https://doi.org/10.1039/C5RA02934A
  15. T. Peng, K. Li, P. Zeng, Q. Zhang and X. Zhang, J. Phys. Chem. C., 116, 22720(2012). https://doi.org/10.1021/jp306947d
  16. L. Jia, D.-H. Wang, Y.-X. Huang, A.-W. Xu and H.-Q. Yu, J. Phys. Chem. C., 115, 11466(2011).
  17. Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan and J. R. Gong, J. Am. Chem. Soc., 133, 10878(2011). https://doi.org/10.1021/ja2025454
  18. A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong and Y. Liu, Adv. Mater., 22, 103(2010). https://doi.org/10.1002/adma.200901920
  19. Y.-S. Hu, A. Kleiman-Shwarsctein, A. J. Forman, D. Hazen, J.-N. Park and E. W. McFarland, Chem. Mater., 20, 3803(2008). https://doi.org/10.1021/cm800144q
  20. C. G. Morales-Guio, M. T. Mayer, A. Yella, S. D. Tilley, M. Grätzel and X. Hu, J. Am. Chem. Soc., 137, 9927(2015). https://doi.org/10.1021/jacs.5b05544
  21. K. Ehrensberger, A. Frei, P. Kuhn, H. R. Oswald and P. Hug, Solid State Ionics, 78, 151(1995). https://doi.org/10.1016/0167-2738(95)00019-3
  22. H. J. Kim, S. H. Lee, A. A. Upadhye, I. Ro, M. I. Tejedor-Tejedor, M. A. Anderson, W. B. Kim and G. W. Huber, ACS Nano, 8, 10756(2014). https://doi.org/10.1021/nn504484u
  23. K. Kim, P. Thiyagarajan, H.-J. Ahn, S.-I Kim and J.-H. Jang, Nanoscale, 5, 6254(2013). https://doi.org/10.1039/c3nr01552a
  24. S. Chandrasekaran, S. H. Hur, W. M. Choi, J. S. Chung and E. J. Kim, Mater. Lett.,160, 92(2015). https://doi.org/10.1016/j.matlet.2015.07.091
  25. Y.-C. Pu, G. Wang, K.-D Chang, Y. Ling, Y.-K. Lin, B. C. Fitzmorris, C.-M. Liu, X. Lu, Y. Tong, J. Z. Zhanf, Y.-J. Hsu and Y. Li, Nano Lett., 13, 3817(2013). https://doi.org/10.1021/nl4018385
  26. J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Yu, Z. Zhang, Y. Mao, S. C. L. Wang, Y. Shen and Y. Tong, Sci. Rep., 3, 1(2013).
  27. H. Gao, C. Liu, H. E. Jeong and P. Yang, ACS Nano., 6, 234(2012). https://doi.org/10.1021/nn203457a
  28. A. A. Tahir, K. U. Wijayantha, S. Saremi-Yarahmadi, M. Mazhar and V. McKee, Chem. Mater., 21, 3763(2009). https://doi.org/10.1021/cm803510v
  29. T. Wang, R. Lv, P. Zhang, C. Li and J. Gong, Nanoscale, 7, 77(2015). https://doi.org/10.1039/C4NR03735A
  30. M. Wu, W.-J. Chen, Y.-H. Shen, F.-Z. Huang, C.-H. Li and S.-K. Li, ACS Appl. Mater. Interfaces, 6, 15052(2014). https://doi.org/10.1021/am503044f
  31. C. K. Chua and M. Pumera, Chem. Soc. Rev., 43, 291(2014). https://doi.org/10.1039/C3CS60303B
  32. T.-F. Yeh, J. Cihláø, C.-Y. Chang, C. Cheng and H. Teng, Mater. Today, 16, 78(2013). https://doi.org/10.1016/j.mattod.2013.03.006
  33. V. C. Ferreira, M. R. Nunes, A. J. Silvestre and O. C. Monteiro, Mater. Chem. Phys., 142, 355(2013). https://doi.org/10.1016/j.matchemphys.2013.07.029
  34. J. Gong, W. Pu, C. Yang and J. Zhang, Catal. Commun., 36, 89(2013). https://doi.org/10.1016/j.catcom.2013.03.009
  35. Y. Li, Y. Xiang, S. Peng, X. Wang and L. Zhou, Electrochim. Acta., 87, 794(2013). https://doi.org/10.1016/j.electacta.2012.09.023
  36. Z. Xu and J. Yu, Nanoscale, 3, 3138(2011). https://doi.org/10.1039/c1nr10282f
  37. L. Sun, J. Cai, Q. Wu, P. Huang, Y. Su and C. Lin, ýElectrochim. Acta., 108, 525(2013). https://doi.org/10.1016/j.electacta.2013.06.149
  38. Y. Yu, H.-H. Wu, B.-L. Zhu, S.-R. Wang, W.-P. Huang, S.-H. Wu S-H and S.-M Zhang, Catal. Lett., 125,168(2008). https://doi.org/10.1007/s10562-008-9517-2
  39. G. Yan, M. Zhang, J. Hou and J. Yang, Mater. Chem. Phys., 129, 553(2011). https://doi.org/10.1016/j.matchemphys.2011.04.063
  40. N. Lu, H. Zhao, J. Li, X. Quan and S. Chen, Sep. Purif. Technol., 62, 668(2008). https://doi.org/10.1016/j.seppur.2008.03.021
  41. Y. Qiu, S.-F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K.-H. Tsui, Y. Zhang, S. Yang and Z. Fan, Nano Lett., 14(4), 2123(2014). https://doi.org/10.1021/nl500359e
  42. J. H. Park, S. Kim and A. J. Bard, Nano Lett., 6(1), 24(2006). https://doi.org/10.1021/nl051807y
  43. H. Fei, Y. Yang, D. L. Rogow, X. Fan, S. R. Oliver. ACS Appl. Mater. Interfaces, 2, 974(2010). https://doi.org/10.1021/am100087b
  44. S. C. Warren, K. Voïtchovsky, H. Dotan, C. M. Leroy, M. Cornuz, F. Stellacci, C. Hébert,A. Rothschild and M. Grätzel , Nat. Mater., 12, 842(2013). https://doi.org/10.1038/nmat3684
  45. S. K. Mohapatra, S. E. John, S. Banerjee and M. Misra, Chem. Mater., 21, 3048(2009). https://doi.org/10.1021/cm8030208
  46. C. D. Bohn, A. K. Agrawal, E. C. Walter, M. D. Vaudin, A. A. Herzing, P. M. Haney, A. A. Talin and V. A. Szalai, J. Phys. Chem. C., 116, 15290(2012). https://doi.org/10.1021/jp305221v
  47. V. Chakrapani, J. Thangala and M. K. Sunkara, Int. J. Hydrogen Energy., 34, 9050(2009). https://doi.org/10.1016/j.ijhydene.2009.09.031
  48. W. Rüttinger and G. C. Dismukes, Chem. Rev., 97(1), 1(1997). https://doi.org/10.1021/cr950201z
  49. J. Li and N. Wu, Catal. Sci. Technol., 5, 1360(2015). https://doi.org/10.1039/C4CY00974F
  50. X. Chen, S. Shen, L. Guo and S. S. Mao, Chem. Rev., 110, 6503(2010). https://doi.org/10.1021/cr1001645
  51. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao and X. Chen, J. Mater. Chem. A, 3, 2485(2015). https://doi.org/10.1039/C4TA04461D
  52. T.-F. Yeh, C.-Y. Teng, S.-J. Chen and H. Teng, Adv. Mater., 26, 3297(2014). https://doi.org/10.1002/adma.201305299
  53. H. M. Chen, C. K. Chen, Y.-C. Chang, C.-W. Tsai, R.-S. Liu, S.-F. Hu, W.-S. Chang and K.-H. Chen, Angew. Chem., 122, 6102(2010). https://doi.org/10.1002/ange.201001827
  54. X. Zhang, Y. Liu, S.-T. Lee, S. Yang and Z. Kang, Energy Environ. Sci., 7, 1409(2014). https://doi.org/10.1039/c3ee43278e
  55. P. Hartmann, D.-K. Lee, B. M. Smarsly and J. Janek, ACS Nano., 4, 3147(2010). https://doi.org/10.1021/nn1004765
  56. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes. Nano Lett., 5(1), 191(2005). https://doi.org/10.1021/nl048301k
  57. I. S. Cho, Z. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo and X. Zheng, Nano Lett., 11(11), 4978(2011). https://doi.org/10.1021/nl2029392
  58. M. Paulose, K. Shankar, S. Yoriya, H. E. PrakasamE, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald and C. A. Grimes. J. Phys. Chem. B, 110, 16179(2006). https://doi.org/10.1021/jp064020k
  59. Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang and P. Wang, Nano Lett., 13(1), 14(2013). https://doi.org/10.1021/nl3029202
  60. R. Dholam, N. Patel, M. Adami and A. Miotello, Int. J. Hydrogen Energy, 34, 5337(2009). https://doi.org/10.1016/j.ijhydene.2009.05.011
  61. A. Fujishima and K. Honda, Nature, 238, 37(1972). https://doi.org/10.1038/238037a0
  62. Y. Fan, D. Li, M. Deng, Y. Luo and Q. Meng. Front. Chem. China, 4(4), 343(2009). https://doi.org/10.1007/s11458-009-0100-1
  63. S. Shet, ECS Trans., 33, 15(2011).
  64. S. Chandrasekaran, J. Nanoeng. Nanomanuf., 1, 242(2011). https://doi.org/10.1166/jnan.2011.1024
  65. L. Li, S. Chen, X. Wang, Y. Bando and D. Golberg, Energy Environ Sci., 5, 6040(2012). https://doi.org/10.1039/c2ee03226k
  66. S. F. Hasany, A. Rehman, R. Jose and I. Ahmed, AIP Conf. Proc., 1502, 298(2012).
  67. S. Chandrasekaran, W. M. Choi, J. S. Chung, S. H. Hur and E. J. Kim, Mater. Lett., 136, 118(2014). https://doi.org/10.1016/j.matlet.2014.07.179
  68. S. Chandrasekaran and R. D. K. Misra, Mater. Technol., 28, 228(2013). https://doi.org/10.1179/1753555713Y.0000000084
  69. M. Grätzel, Nature, 414, 338(2001). https://doi.org/10.1038/35104607
  70. S. Chandrasekaran, Sol. Energy Mater. Sol. Cells., 109, 220(2013). https://doi.org/10.1016/j.solmat.2012.11.003
  71. J. Su, X. Feng, J. D. Sloppy, L. Guo and C. A. Grimes, Nano Lett., 11, 203(2011). https://doi.org/10.1021/nl1034573

Cited by

  1. Highly enhanced visible light water splitting of CdS by green to blue upconversion vol.46, pp.40, 2017, https://doi.org/10.1039/C7DT02936E
  2. Photocatalytic water splitting of TiO2 nanotubes powders prepared via rapid breakdown anodization sensitized with Pt, Pd and Ni nanoparticles 2018, https://doi.org/10.1080/10667857.2018.1433349
  3. Facile Hydrothermally Synthesized a Novel CdS Nanoflower/Rutile-TiO2 Nanorod Heterojunction Photoanode Used for Photoelectrocatalytic Hydrogen Generation vol.5, pp.9, 2017, https://doi.org/10.1021/acssuschemeng.7b00558
  4. High-efficient TiO2 NRs/BiOI NSs heterojunction photoanodes for photoelectrochemical water splitting vol.32, pp.13, 2017, https://doi.org/10.1080/10667857.2017.1366676
  5. A review on adsorption-enhanced photoreduction of carbon dioxide by nanocomposite materials 2017, https://doi.org/10.1007/s42114-017-0001-6
  6. / carbon sphere for high-performance supercapacitors pp.1753-5557, 2018, https://doi.org/10.1080/10667857.2018.1548115
  7. thin films: application to gas sensor and novel photovoltaic solar cell structure vol.33, pp.12, 2018, https://doi.org/10.1080/10667857.2018.1503385
  8. Development of a miniaturized injection cell for online electrochemistry–capillary electrophoresis–mass spectrometry vol.149, pp.9, 2018, https://doi.org/10.1007/s00706-018-2202-2
  9. Synthesis of zinc oxide microrod arrays and their performance as piezo-generators vol.33, pp.9, 2018, https://doi.org/10.1080/10667857.2018.1481006
  10. reduction and photoelectrochemical water splitting vol.6, pp.24, 2018, https://doi.org/10.1039/C8TA03669A
  11. Porous carbons derived from tea-seed shells and their improved electrochemical performance in lithium-ion batteries and supercapacitors vol.33, pp.7, 2018, https://doi.org/10.1080/10667857.2018.1466511
  12. Z-scheme photocatalyst efficiently by visible-light driven vol.33, pp.6, 2018, https://doi.org/10.1080/10667857.2018.1455385

Acknowledgement

Grant : BK21플러스

Supported by : 울산대학교