Effects of Aging on Electrocatalytic Activities of Pt and Pd Nanoparticles

Dutta, Gorachand;Yang, Haesik

  • Received : 2015.10.21
  • Accepted : 2015.12.02
  • Published : 2016.03.31


Although the time dependences of the electrocatalytic activities of Pt and Pd nanoparticles during electrochemical operations have been widely studied, the time dependences under nonpolarized conditions have never been investigated in depth. This study reports the changes in the electrocatalytic activities of Pt and Pd nanoparticles with aging in air and in solution. Pt (or Pd) nanoparticle-modified electrodes are obtained by adsorbing citrate-stabilized Pt (or Pd) nanoparticles on amine-modified indium-tin oxide (ITO) electrodes, or by electrodeposition of Pt (or Pd) nanoparticles on ITO electrodes. The electrocatalytic activities of freshly prepared Pt and Pd nanoparticles in the oxygen reduction reaction slowly decrease with aging. The electrocatalytic activities decrease more slowly in solution than in air. An increase in surface contamination may cause electrocatalytic deactivation during aging. The electrocatalytic activities of long-aged Pt (or Pd) nanoparticles are significantly enhanced and recovered by NaBH4 treatment.


Pt nanoparticles;Pd nanoparticles;electrocatalytic activity;oxygen reduction reaction;aging


  1. S. Garbarino, A. Pereira, C. Hamel, E´. Irissou, M. Chaker and D. Guay, J. Phys. Chem. C, 114, 2980 (2010).
  2. R. C. Cerritos, M. Guerra-Balcázar, R. F. Ramírez, J. Ledesma-Garcia and L. G. Arriaga, Materials, 5, 1686 (2012).
  3. B. N. Wanjala, B. Fang, J. Luo, Y. Chen, J. Yin, M. H. Engelhard, R. Loukrakpam and C.-J Zhong, J. Am. Chem. Soc., 133, 12714 (2011).
  4. J. Bao, M. Dou, H. Liu, F. Wang, J. Liu, Z. Li and J. Ji, ACS Appl. Mater. Interfaces, 7, 15223 (2015).
  5. G. He, Y. Song, X. Kang and S. Chen, Electrochim. Acta, 94, 98 (2013).
  6. J. Das, H. Kim, K. Jo, K. H Park, S. Jon, K. Lee and H. Yang, Chem. Commun., 6394 (2009).
  7. H. J. Kang, S. Patra, J. Das, A. Aziz, J. Jo and H. Yang, Electrochem. Commun., 12, 1245 (2010).
  8. G. Dutta, K. Jo, H. Lee, B. Kim, H. Y. Woo and H. Yang, J. Electroanal. Chem., 675, 41 (2012).
  9. V.-D. Dao and H.-S. Choi, Electrochim. Acta, 93, 287 (2013).
  10. G. Dutta, A.-M. Jiaul and H. Yang, Electrochim. Acta, 141, 319 (2014).
  11. M. Huang, Y. Shao, X. Sun, H. Chen, B. Liu, and S. Dong, Langmuir, 21, 323 (2005).
  12. M. S. El-Deab, F. Kitamura and T. Oshsaka, J. Electrochem. Soc., 160, F651 (2013).
  13. F. Godínez-Salomón, E. Arce-Estrada and M. Hallen-López, Int. J. Electrochem. Sci., 7, 2566 (2012).
  14. A. Datta, S. Kapri and S. Bhattacharyya, Green Chem., 17, 1572 (2015).
  15. M. K. Debe, Nature, 43, 486 (2012).
  16. A. Sáez, J. Solla-Gullón, E. Expósito, A. Aldaz and V. Montiel, Int. J. Electrochem. Sci., 8, 7030 (2013).
  17. H. J. Park and S. H. Hur J. Korean Electrochem. Soc., 17, 201 (2014).
  18. E. Spain, H. McArdle, T. E. Keyes and R.-J. Forster, Analyst, 138, 4340 (2013).
  19. S. H. Lim, J. Wei, J. Lin, Q. Li and J. K. You, Biosens. Bioelectron., 20, 2341 (2005).
  20. M. Rashid, T.-S. Jun and Y. S. Kim, J. Korean Electrochem. Soc., 17, 18 (2014).
  21. V. T. T. Ho, C.-J. Pan, J. Rick, W.-N. Su and B.-J. Hwang, J. Am. Chem. Soc., 133, 11716 (2011).
  22. S. Y. Ang and D. A. Walsh, Appl. Catal., B, 98, 49 (2010).

Cited by

  1. Bimetallic Au@Pt nanoparticles dispersed in conducting polymer—A catalyst of enhanced activity towards formic acid electrooxidation vol.246, 2017,


Grant : 원자력시설 고도제염기술 개발

Supported by : 한국원자력연구원