DOI QR코드

DOI QR Code

Characteristics of Sr0.92Y0.08TiO3-δ Anode in Humidified MethaneFuel for Intermediate Temperature Solid Oxide Fuel Cells

Park, Eun Kyung;Yun, Jeong Woo

  • 투고 : 2015.11.22
  • 심사 : 2015.11.03
  • 발행 : 2016.03.31

초록

Sr0.92Y0.08TiO3-δ (SYT) was investigated as an alternative anode in humidified CH4 fuel for SOFCs at low temperatures (650 ℃-750 ℃) and compared with the conventional Ni/yttria-stabilized zirconia (Ni/YSZ) anode. The goal of the study was to directly use a hydrocarbon fuel in a SOFC without a reforming process. The cell performance of the SYT anode was relatively low compared with that of the Ni/YSZ anode because of the poor electrochemical catalytic activity of SYT. In the presence of CH4 fuel, however, the cell performance with the SYT anode decreased by 20%, in contrast to the 58% decrease in the case of the Ni/YSZ anode. The severe degradation of cell performance observed with the Ni/YSZ anode was caused by carbon deposition that resulted from methane thermal cracking. Carbon was much less detected in the SYT anode due to the catalytic oxidation. Otherwise, a significant amount of bulk carbon was detected in the Ni/YSZ anode.

키워드

Solid oxide fuel cell;Sr0.92Y0.08TiO3-δ;methane;alternative anode;carbon deposition

참고문헌

  1. J. M. Lee, Y. G. Kim, S. J. Lee, H. S. Kim, S. P. Yoon, S. W. Nam, S. D. Yoon and J. W. Yun, J. Appl. Electrochem, 44, 581 (2014) https://doi.org/10.1007/s10800-014-0670-6
  2. Q. Fu, F. Tietz, D. Sebold, S. Tao and J. T. S. Irvine, J. Power Sources, 171, 663 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.159
  3. H. He, Y. Huang, J. M. Vohs and R. J. Gorte, Solid State Ionics, 175, 171 (2004). https://doi.org/10.1016/j.ssi.2004.09.033
  4. J. W. Yun, H. C. Ham, H. S. Kim, S. A. Song, S. W. Nam and S. P. Yoon, J. Electrochem. Soc., 160, F153 (2013).
  5. M. Y. Yoon, R.-H. Song, D.-R. Shin and H. J. Hwang, J. Korean Powder Metall. Inst., 17(1), 59 (2010). https://doi.org/10.4150/KPMI.2010.17.1.059
  6. J. M. Lee, Y. G. Kim, S. J. Lee, H. S. Kim, S. P. Yoon, S. W. Nam, S. D. Yoon and J. W. Yun, J. Appl. Electrochem., 44, 581 (2014). https://doi.org/10.1007/s10800-014-0670-6
  7. J. B. Goodenough and Y.-H. Huang, J. Power Sources, 173, 1 (2007). https://doi.org/10.1016/j.jpowsour.2007.08.011
  8. S. Hui and A. Petric, J. European Ceramic Society, 22, 1673 (2002). https://doi.org/10.1016/S0955-2219(01)00485-X
  9. X. Huang, H. Zhao, W. Shen, W. Qiu and W. Wu, J. Physics and Chemistry of Solids, 67, 2609 (2006). https://doi.org/10.1016/j.jpcs.2006.08.004
  10. S. Hui and A. Petric, J. Electrochem. Soc. 149(1), J1 (2002). https://doi.org/10.1149/1.1420706
  11. V. Vasechko, B. Huang, Q. Ma, F. Tietz and J. Malzbender, J. Eur. Ceram. Soc., 34, 3749 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.05.013
  12. G. Xiao and F. Chen, Frontiers in Energy research, 2(18), 1 (2014).
  13. N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya and T. Iwata, J. Mater. Sci., 25, 4531 (1990). https://doi.org/10.1007/BF00581119
  14. M. Mori and N. M Sammes, Solid State Ionics, 146, 301 (2002). https://doi.org/10.1016/S0167-2738(01)01020-7
  15. K. Huang and J. B. Goodenough, Solid oxide fuel cell technology: Principles, Performance and Operations, Elesevier (2009).
  16. H. S. Kim, S. P. Yoon, J. W. Yun, S. A. Song, S.-C. Jang, S. W. Nam and Y.-G. Shul, International Journal of hydrogen energy, 37, 16130 (2012). https://doi.org/10.1016/j.ijhydene.2012.08.030
  17. H. S. Kim, G. S. Kim, J. W. Yun, H. C. Ham, J. H. Jang, J. H. Han, S. W. Nam, Y.-G. Shul and S. P. Yoon, Ceramics International, 40, 8237 (2014). https://doi.org/10.1016/j.ceramint.2014.01.021
  18. Q. X. Fu, S. B. Mi, E. Wessel and F. Tietz, J. Eur. Ceram. Soc., 28, 811 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.07.022
  19. M. García-Gabaldóna, V. Pérez-Herranz, E. Sánchezb and S. Mestre , J. Memb. Sci., 280, 536 (2006). https://doi.org/10.1016/j.memsci.2006.02.007
  20. A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. McEvoy, M. Mogensen, S. C. Singhal and J. Vohs, Nature mater., 3, 17 (2004). https://doi.org/10.1038/nmat1040
  21. R. M. Ormerod, Chem. Soc. Rev., 32, 17 (2003). https://doi.org/10.1039/b105764m

피인용 문헌

  1. Characteristics of Sr 0.92 Y 0.08 Ti 1-y Ni y O 3-δ anode and Ni-infiltrated Sr 0.92 Y 0.08 TiO 3-δ anode using CH 4 fuel in solid oxide fuel cells vol.429, 2018, https://doi.org/10.5229/JECST.2016.7.1.33
  2. Effects of zinc nitrate as a sintering aid on the electrochemical characteristics of Sr 0.92 Y 0.08 TiO 3–δ and Sr 0.92 Y 0.08 Ti 0.6 Fe 0.4 O 3–δ anodes vol.44, pp.4, 2018, https://doi.org/10.5229/JECST.2016.7.1.33
  3. Characterization of novel Ba 2 LnMoO 6 (Ln = Pr and Nd) double perovskite as the anode material for hydrocarbon-fueled solid oxide fuel cells vol.737, 2018, https://doi.org/10.5229/JECST.2016.7.1.33